Number computed as a product of powers
In mathematics , and more specifically number theory , the hyperfactorial of a positive integer
n
{\displaystyle n}
is the product of the numbers of the form
x
x
{\displaystyle x^{x}}
from
1
1
{\displaystyle 1^{1}}
to
n
n
{\displaystyle n^{n}}
.
Definition
The hyperfactorial of a positive integer
n
{\displaystyle n}
is the product of the numbers
1
1
,
2
2
,
…
,
n
n
{\displaystyle 1^{1},2^{2},\dots ,n^{n}}
. That is,[ 1] [ 2]
H
(
n
)
=
1
1
⋅
2
2
⋅
⋯
n
n
=
∏
i
=
1
n
i
i
=
n
n
H
(
n
−
1
)
.
{\displaystyle H(n)=1^{1}\cdot 2^{2}\cdot \cdots n^{n}=\prod _{i=1}^{n}i^{i}=n^{n}H(n-1).}
Following the usual convention for the empty product , the hyperfactorial of 0 is 1. The sequence of hyperfactorials, beginning with
H
(
0
)
=
1
{\displaystyle H(0)=1}
, is:[ 1]
1, 1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, ... (sequence
A002109 in the
OEIS )
Interpolation and approximation
The hyperfactorials were studied beginning in the 19th century by Hermann Kinkelin [ 3] [ 4] and James Whitbread Lee Glaisher .[ 5] [ 4] As Kinkelin showed, just as the factorials can be continuously interpolated by the gamma function , the hyperfactorials can be continuously interpolated by the K-function as
K
(
n
+
1
)
=
H
(
n
)
{\displaystyle K(n+1)=H(n)}
.[ 3]
Glaisher provided an asymptotic formula for the hyperfactorials, analogous to Stirling's formula for the factorials:
H
(
n
)
=
A
n
(
6
n
2
+
6
n
+
1
)
/
12
e
−
n
2
/
4
(
1
+
1
720
n
2
−
1433
7257600
n
4
+
⋯
)
,
{\displaystyle H(n)=An^{(6n^{2}+6n+1)/12}e^{-n^{2}/4}\left(1+{\frac {1}{720n^{2}}}-{\frac {1433}{7257600n^{4}}}+\cdots \right)\!,}
where
A
≈
1.28243
{\displaystyle A\approx 1.28243}
is the Glaisher–Kinkelin constant .[ 2] [ 5]
Other properties
According to an analogue of Wilson's theorem on the behavior of factorials modulo prime numbers, when
p
{\displaystyle p}
is an odd prime number
H
(
p
−
1
)
≡
(
−
1
)
(
p
−
1
)
/
2
(
p
−
1
)
!
!
(
mod
p
)
,
{\displaystyle H(p-1)\equiv (-1)^{(p-1)/2}(p-1)!!{\pmod {p}},}
where
!
!
{\displaystyle !!}
is the notation for the double factorial .[ 4]
The hyperfactorials give the sequence of discriminants of Hermite polynomials in their probabilistic formulation.[ 1]
References
^ a b c Sloane, N. J. A. (ed.), "Sequence A002109 (Hyperfactorials: Product_{k = 1..n} k^k)" , The On-Line Encyclopedia of Integer Sequences , OEIS Foundation
^ a b Alabdulmohsin, Ibrahim M. (2018), Summability Calculus: A Comprehensive Theory of Fractional Finite Sums , Cham: Springer, pp. 5– 6, doi :10.1007/978-3-319-74648-7 , ISBN 978-3-319-74647-0 , MR 3752675 , S2CID 119580816
^ a b Kinkelin, H. (1860), "Ueber eine mit der Gammafunction verwandte Transcendente und deren Anwendung auf die Integralrechung" [On a transcendental variation of the gamma function and its application to the integral calculus], Journal für die reine und angewandte Mathematik (in German), 1860 (57): 122– 138, doi :10.1515/crll.1860.57.122 , S2CID 120627417
^ a b c Aebi, Christian; Cairns, Grant (2015), "Generalizations of Wilson's theorem for double-, hyper-, sub- and superfactorials", The American Mathematical Monthly , 122 (5): 433– 443, doi :10.4169/amer.math.monthly.122.5.433 , JSTOR 10.4169/amer.math.monthly.122.5.433 , MR 3352802 , S2CID 207521192
^ a b Glaisher, J. W. L. (1877), "On the product 11 .22 .33 ... n n " , Messenger of Mathematics , 7 : 43– 47
External links