Hochschild homology

In mathematics, Hochschild homology (and cohomology) is a homology theory for associative algebras over rings. There is also a theory for Hochschild homology of certain functors. Hochschild cohomology was introduced by Gerhard Hochschild (1945) for algebras over a field, and extended to algebras over more general rings by Henri Cartan and Samuel Eilenberg (1956).

Definition of Hochschild homology of algebras

Let k be a field, A an associative k-algebra, and M an A-bimodule. The enveloping algebra of A is the tensor product of A with its opposite algebra. Bimodules over A are essentially the same as modules over the enveloping algebra of A, so in particular A and M can be considered as Ae-modules. Cartan & Eilenberg (1956) defined the Hochschild homology and cohomology group of A with coefficients in M in terms of the Tor functor and Ext functor by

Hochschild complex

Let k be a ring, A an associative k-algebra that is a projective k-module, and M an A-bimodule. We will write for the n-fold tensor product of A over k. The chain complex that gives rise to Hochschild homology is given by

with boundary operator defined by

where is in A for all and . If we let

then , so is a chain complex called the Hochschild complex, and its homology is the Hochschild homology of A with coefficients in M. Henceforth, we will write as simply .

Remark

The maps are face maps making the family of modules a simplicial object in the category of k-modules, i.e., a functor Δok-mod, where Δ is the simplex category and k-mod is the category of k-modules. Here Δo is the opposite category of Δ. The degeneracy maps are defined by

Hochschild homology is the homology of this simplicial module.

Relation with the Bar complex

There is a similar looking complex called the Bar complex which formally looks very similar to the Hochschild complex[1]pg 4-5. In fact, the Hochschild complex can be recovered from the Bar complex asgiving an explicit isomorphism.

As a derived self-intersection

There's another useful interpretation of the Hochschild complex in the case of commutative rings, and more generally, for sheaves of commutative rings: it is constructed from the derived self-intersection of a scheme (or even derived scheme) over some base scheme . For example, we can form the derived fiber productwhich has the sheaf of derived rings . Then, if embed with the diagonal mapthe Hochschild complex is constructed as the pullback of the derived self intersection of the diagonal in the diagonal product schemeFrom this interpretation, it should be clear the Hochschild homology should have some relation to the Kähler differentials since the Kähler differentials can be defined using a self-intersection from the diagonal, or more generally, the cotangent complex since this is the derived replacement for the Kähler differentials. We can recover the original definition of the Hochschild complex of a commutative -algebra by setting and Then, the Hochschild complex is quasi-isomorphic toIf is a flat -algebra, then there's the chain of isomorphisms giving an alternative but equivalent presentation of the Hochschild complex.

Hochschild homology of functors

The simplicial circle is a simplicial object in the category of finite pointed sets, i.e., a functor Thus, if F is a functor , we get a simplicial module by composing F with .

The homology of this simplicial module is the Hochschild homology of the functor F. The above definition of Hochschild homology of commutative algebras is the special case where F is the Loday functor.

Loday functor

A skeleton for the category of finite pointed sets is given by the objects

where 0 is the basepoint, and the morphisms are the basepoint preserving set maps. Let A be a commutative k-algebra and M be a symmetric A-bimodule[further explanation needed]. The Loday functor is given on objects in by

A morphism

is sent to the morphism given by

where

Another description of Hochschild homology of algebras

The Hochschild homology of a commutative algebra A with coefficients in a symmetric A-bimodule M is the homology associated to the composition

and this definition agrees with the one above.

Examples

The examples of Hochschild homology computations can be stratified into a number of distinct cases with fairly general theorems describing the structure of the homology groups and the homology ring for an associative algebra . For the case of commutative algebras, there are a number of theorems describing the computations over characteristic 0 yielding a straightforward understanding of what the homology and cohomology compute.

Commutative characteristic 0 case

In the case of commutative algebras where , the Hochschild homology has two main theorems concerning smooth algebras, and more general non-flat algebras ; but, the second is a direct generalization of the first. In the smooth case, i.e. for a smooth algebra , the Hochschild-Kostant-Rosenberg theorem[2]pg 43-44 states there is an isomorphism for every . This isomorphism can be described explicitly using the anti-symmetrization map. That is, a differential -form has the map If the algebra isn't smooth, or even flat, then there is an analogous theorem using the cotangent complex. For a simplicial resolution , we set . Then, there exists a descending -filtration on whose graded pieces are isomorphic to Note this theorem makes it accessible to compute the Hochschild homology not just for smooth algebras, but also for local complete intersection algebras. In this case, given a presentation for , the cotangent complex is the two-term complex .

Polynomial rings over the rationals

One simple example is to compute the Hochschild homology of a polynomial ring of with -generators. The HKR theorem gives the isomorphism where the algebra is the free antisymmetric algebra over in -generators. Its product structure is given by the wedge product of vectors, so for .

Commutative characteristic p case

In the characteristic p case, there is a userful counter-example to the Hochschild-Kostant-Rosenberg theorem which elucidates for the need of a theory beyond simplicial algebras for defining Hochschild homology. Consider the -algebra . We can compute a resolution of as the free differential graded algebrasgiving the derived intersection where and the differential is the zero map. This is because we just tensor the complex above by , giving a formal complex with a generator in degree which squares to . Then, the Hochschild complex is given byFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \mathbb{F}_p\otimes^\mathbb{L}_{\mathbb{F}_p\otimes^\mathbb{L}_\mathbb{Z} \mathbb{F}_p}\mathbb{F}_p} In order to compute this, we must resolve as an -algebra. Observe that the algebra structure

forces . This gives the degree zero term of the complex. Then, because we have to resolve the kernel , we can take a copy of shifted in degree and have it map to , with kernel in degree We can perform this recursively to get the underlying module of the divided power algebrawith and the degree of is , namely . Tensoring this algebra with over givessince multiplied with any element in is zero. The algebra structure comes from general theory on divided power algebras and differential graded algebras.[3] Note this computation is seen as a technical artifact because the ring is not well behaved. For instance, . One technical response to this problem is through Topological Hochschild homology, where the base ring is replaced by the sphere spectrum .

Topological Hochschild homology

The above construction of the Hochschild complex can be adapted to more general situations, namely by replacing the category of (complexes of) -modules by an ∞-category (equipped with a tensor product) , and by an associative algebra in this category. Applying this to the category of spectra, and being the Eilenberg–MacLane spectrum associated to an ordinary ring yields topological Hochschild homology, denoted . The (non-topological) Hochschild homology introduced above can be reinterpreted along these lines, by taking for the derived category of -modules (as an ∞-category).

Replacing tensor products over the sphere spectrum by tensor products over (or the Eilenberg–MacLane-spectrum ) leads to a natural comparison map . It induces an isomorphism on homotopy groups in degrees 0, 1, and 2. In general, however, they are different, and tends to yield simpler groups than HH. For example,

is the polynomial ring (with x in degree 2), compared to the ring of divided powers in one variable.

Lars Hesselholt (2016) showed that the Hasse–Weil zeta function of a smooth proper variety over can be expressed using regularized determinants involving topological Hochschild homology.

See also

References

  1. ^ Morrow, Matthew. "Topological Hochschild homology in arithmetic geometry" (PDF). Archived (PDF) from the original on 24 Dec 2020.
  2. ^ Ginzburg, Victor (2005-06-29). "Lectures on Noncommutative Geometry". arXiv:math/0506603.
  3. ^ "Section 23.6 (09PF): Tate resolutions—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-12-31.

Introductory articles

Commutative case

  • Antieau, Benjamin; Bhatt, Bhargav; Mathew, Akhil (2019). "Counterexamples to Hochschild–Kostant–Rosenberg in characteristic p". arXiv:1909.11437 [math.AG].

Noncommutative case

Read other articles:

Van der MadewegGeneral informationLocationVan der Madeweg, Duivendrecht, NetherlandsCoordinates52°19′47″N 4°55′49″E / 52.32972°N 4.93028°E / 52.32972; 4.93028Owned byGVBLine(s)50, 53, 54 (Metro)Platforms4Tracks4ConstructionDepthsuperficialOther informationFare zone5715 (Oost)HistoryOpened16 October 1977Rebuilt2009, 2016Services Preceding station Amsterdam Metro Following station Overamsteltowards Isolatorweg Line 50 Station Duivendrechttowards Gein Spa...

 

Don't Ever MarrySutradaraMarshall NeilanVictor HeermanProduserMarshall NeilanSkenarioMarion FairfaxBerdasarkanDon't Ever Marryoleh Edgar FranklinPemeranMatt MooreMarjorie DawThomas JeffersonMayme KelsoBetty BoutonChristine MayoSinematograferHenry CronjagerDavid KessonPerusahaanproduksiMarshall Neilan ProductionsDistributorFirst National Exhibitors' CircuitTanggal rilis 18 April 1920 (1920-04-18) Durasi60 menitNegaraAmerika SerikatBahasaInggris Don't Ever Marry adalah sebuah film komedi A...

 

UH-60 Black Hawk milik US Army, Juni 2002 Sikorsky UH-60 Black Hawk adalah helikopter serba guna angkut menengah bermesin ganda yang diproduksi oleh Sikorsky Aircraft . Sikorsky mengajukan desain S-70 untuk kompetisi Utility Tactical Transport Aircraft System (UTTAS) Angkatan Darat Amerika Serikat pada tahun 1972. Tentara ditunjuk prototipe sebagai YUH-60A dan memilih Black Hawk sebagai pemenang program pada tahun 1976, setelah kompetisi fly-off dengan Boeing Vertol YUH-61 . UH-60A memasuki d...

For the ghost town in Denton County, see Alton, Texas (ghost town). City in TexasAlton, TexasCityLocation of Alton, TexasCoordinates: 26°17′4″N 98°18′21″W / 26.28444°N 98.30583°W / 26.28444; -98.30583Country United States of AmericaState TexasCountyHidalgoIncorporated1978[1]Area[2] • Total7.31 sq mi (18.94 km2) • Land7.31 sq mi (18.93 km2) • Water0.00 sq mi...

 

Pour les articles homonymes, voir Boson (homonymie). Photons émis dans le faisceau cohérent d'un laser. En mécanique quantique, un boson est une particule subatomique de spin entier qui obéit à la statistique de Bose-Einstein. Le théorème spin-statistique différencie les bosons des fermions, qui ont un spin demi-entier. La famille des bosons inclut des particules élémentaires : les photons, les gluons, les bosons Z et W (ce sont les quatre bosons de jauge du modèle standard),...

 

This article is about the situation in the modern Egyptian state. For information about homosexuality in antiquity, see Homosexuality in ancient Egypt. LGBT rights in EgyptEgyptStatusDe jure legal De facto illegal after 2000PenaltyUnder morality laws punishment up to 17 years with hard labor, fines, and deportation[1]Gender identitySex reassignment surgery is allowed and can be performed in the country after obtaining approval from Al-Azhar Mosque or the Coptic Orthodox Church of Ale...

MonodactylidaeRentang fosil: Eosen–sekarang Monodactylus argenteus Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Animalia Filum: Chordata Kelas: Actinopterygii Ordo: Perciformes Subordo: Percoidei Famili: MonodactylidaeD. S. Jordan & Evermann, 1898 Genus Monodactylus Schuettea Monodactylidae adalah keluarga ikan bertulang dalam ordo perciformes. Semua anggotanya sangat terkompresi secara lateral dengan tubuh berbentuk cakram dan sirip dubur dan punggung yang tinggi. Tidak seperti ikan...

 

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of Ancestral Puebloan dwellings in Utah – news · newspapers · books · scholar · JSTOR (July 2011) (Learn how and when to remove this message) Part of a series onAncestral Puebloan dwellings Arizona Chihuahua Colorado Nevada New Mexico Sonora Texas Utah vt...

Air gun used in the shooting sport of paintball This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Paintball marker – news · newspapers · books · scholar · JSTOR (April 2009) (Learn how and when to remove this message) A paintball marker and related equipment, including ammunition and a protective mask A paintb...

 

Pour les articles homonymes, voir Châteauneuf. Ne doit pas être confondu avec Château-Ville-Vieille. Châteauneuf-Villevieille Vue du village depuis les ruines de Castel Nuovo. Blason Administration Pays France Région Provence-Alpes-Côte d’Azur Département Alpes-Maritimes Arrondissement Nice Intercommunalité Métropole Nice Côte d'Azur Maire Mandat Edmond Mari 2020-2026 Code postal 06390 Code commune 06039 Démographie Gentilé Madonencs Populationmunicipale 971 hab. (2021 ) D...

 

2017 studio album by the Glorious SonsYoung Beauties and FoolsStudio album by the Glorious SonsReleasedOctober 13, 2017RecordedFebruary – March 2017StudioCatherine North Studio, Hamilton, OntarioGenreAlternative rock, hard rock, Southern rock, heartland rockLength32:29LabelBlack Box Recordings, IncProducerJohn-Angus MacDonaldThe Glorious Sons chronology The Union(2014) Young Beauties and Fools(2017) A War on Everything(2019) Singles from Young Beauties and Fools Everything Is Alrigh...

Corridor Québec-Windsor Aires urbaines significatives : Québec Lévis Trois-Rivières Laval Montréal Gatineau Ottawa Kingston Toronto Mississauga Hamilton Oshawa Kitchener-Waterloo London St. Catharines Windsor Administration Pays Canada Province Québec Ontario Population : 18 000 000 hab. (Rencensement 2006) Géographie Coordonnées 44° 20′ 24″ nord, 77° 04′ 48″ ouest Superficie 23 000 000 ha = 230 000 ...

 

Halaman ini berisi artikel tentang aktris. Untuk istri William Shakespeare, lihat Anne Hathaway (istri Shakespeare). Untuk kegunaan lain, lihat Anne Hathaway (disambiguasi). Anne HathawayHathway, 2017LahirAnne Jacqueline Hathaway12 November 1982 (umur 41)Brooklyn, New YorkPekerjaanaktrisTahun aktif1999 - sekarangSuami/istriAdam ShulmanAnak2Tanda tangan Anne Jacqueline Hathaway (lahir 12 November 1982) adalah seorang aktris asal Amerika Serikat. Hathaway memulai debut aktingnya pada ...

 

Villa Medici Loggia dei leoni villa, termasuk replika Singa Medici Akademi Prancis di Roma (bahasa Prancis: Académie de France à Rome) merupakan sebuah akademi yang terletak di Villa Medici, di dalam Villa Borghese, di Bukit Pincian, Roma, Italia. Lihat pula Villa Medici dilukis oleh Diego Velázquez Akademi Amerika di Roma Villa Massimo Catatan Pranala luar Situs web resmi Google Map Koordinat: 41°54′30″N 12°28′57″E / 41.90833°N 12.48250°E / 41.90833...

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. جزء من سلسلة مقالات حول جزءمجتمع الميمLGBT flag توجه جنسي مثلية جنسية التركيبة السكانيّة علم الأحياء البيئة تاريخ تاريخ المثليين الحركات الاجتماعية ثقافة مجتمع المثليين الطلوع...

 

British eugenicist, polymath, and behavioral geneticist (1822–1911) Galton redirects here. For other uses, see Galton (disambiguation). SirFrancis GaltonFRS FRAIAn 1882 portrait of Galton by Gustav GraefBorn(1822-02-16)16 February 1822Birmingham, EnglandDied17 January 1911(1911-01-17) (aged 88)Haslemere, Surrey, EnglandResting placeClaverdon, Warwickshire, EnglandAlma materKing's College, LondonTrinity College, CambridgeKnown forEugenicsBehavioural geneticsRegression toward t...

 

جواز سفر مجريمعلومات عامةنوع المستند جواز سفرالغرض التعريف (هوية شخصية)تاريخ الإصدار 29 أغسطس 2006[1] (جواز السفر الإلكتروني) 1 مارس 2012[2] (الإصدار الحالي)صادر عن  المجرصالح في المجرمتطلبات الاستحقاق الجنسية المجريةتعديل - تعديل مصدري - تعديل ويكي بيانات يصدر جوازات ا...

Not to be confused with U.S. Immigration and Customs Enforcement or Border Force. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Immigration Enforcement – news · newspapers · books · scholar · JSTOR (August 2016) (Learn how and when to remove this message) Law enforcement agency Immigration EnforcementAgenc...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Evropa 2 – news · newspapers · books · scholar · JSTOR (December 2008) (Learn how and when to remove this message) Radio station in PragueEvropa 2PragueBroadcast areaCzech RepublicFrequency88.2 MHz (Prague)105.5 MHz (Brno)ProgrammingLanguage(s)CzechOwnershipOwn...