Derived scheme

In algebraic geometry, a derived scheme is a homotopy-theoretic generalization of a scheme in which classical commutative rings are replaced with derived versions such as differential graded algebras, commutative simplicial rings, or commutative ring spectra.

From the functor of points point-of-view, a derived scheme is a sheaf X on the category of simplicial commutative rings which admits an open affine covering .

From the locally ringed space point-of-view, a derived scheme is a pair consisting of a topological space X and a sheaf either of simplicial commutative rings or of commutative ring spectra[1] on X such that (1) the pair is a scheme and (2) is a quasi-coherent -module.

A derived stack is a stacky generalization of a derived scheme.

Differential graded scheme

Over a field of characteristic zero, the theory is closely related to that of a differential graded scheme.[2] By definition, a differential graded scheme is obtained by gluing affine differential graded schemes, with respect to étale topology.[3] It was introduced by Maxim Kontsevich[4] "as the first approach to derived algebraic geometry."[5] and was developed further by Mikhail Kapranov and Ionut Ciocan-Fontanine.

Connection with differential graded rings and examples

Just as affine algebraic geometry is equivalent (in categorical sense) to the theory of commutative rings (commonly called commutative algebra), affine derived algebraic geometry over characteristic zero is equivalent to the theory of commutative differential graded rings. One of the main example of derived schemes comes from the derived intersection of subschemes of a scheme, giving the Koszul complex. For example, let , then we can get a derived scheme

where

is the étale spectrum.[citation needed] Since we can construct a resolution

the derived ring , a derived tensor product, is the koszul complex . The truncation of this derived scheme to amplitude provides a classical model motivating derived algebraic geometry. Notice that if we have a projective scheme

where we can construct the derived scheme where

with amplitude

Cotangent complex

Construction

Let be a fixed differential graded algebra defined over a field of characteristic . Then a -differential graded algebra is called semi-free if the following conditions hold:

  1. The underlying graded algebra is a polynomial algebra over , meaning it is isomorphic to
  2. There exists a filtration on the indexing set where and for any .

It turns out that every differential graded algebra admits a surjective quasi-isomorphism from a semi-free differential graded algebra, called a semi-free resolution. These are unique up to homotopy equivalence in a suitable model category. The (relative) cotangent complex of an -differential graded algebra can be constructed using a semi-free resolution : it is defined as

Many examples can be constructed by taking the algebra representing a variety over a field of characteristic 0, finding a presentation of as a quotient of a polynomial algebra and taking the Koszul complex associated to this presentation. The Koszul complex acts as a semi-free resolution of the differential graded algebra where is the graded algebra with the non-trivial graded piece in degree 0.

Examples

The cotangent complex of a hypersurface can easily be computed: since we have the dga representing the derived enhancement of , we can compute the cotangent complex as

where and is the usual universal derivation. If we take a complete intersection, then the koszul complex

is quasi-isomorphic to the complex

This implies we can construct the cotangent complex of the derived ring as the tensor product of the cotangent complex above for each .

Remarks

Please note that the cotangent complex in the context of derived geometry differs from the cotangent complex of classical schemes. Namely, if there was a singularity in the hypersurface defined by then the cotangent complex would have infinite amplitude. These observations provide motivation for the hidden smoothness philosophy of derived geometry since we are now working with a complex of finite length.

Tangent complexes

Polynomial functions

Given a polynomial function then consider the (homotopy) pullback diagram

where the bottom arrow is the inclusion of a point at the origin. Then, the derived scheme has tangent complex at is given by the morphism

where the complex is of amplitude . Notice that the tangent space can be recovered using and the measures how far away is from being a smooth point.

Stack quotients

Given a stack there is a nice description for the tangent complex:

If the morphism is not injective, the measures again how singular the space is. In addition, the Euler characteristic of this complex yields the correct (virtual) dimension of the quotient stack. In particular, if we look at the moduli stack of principal -bundles, then the tangent complex is just .

Derived schemes in complex Morse theory

Derived schemes can be used for analyzing topological properties of affine varieties. For example, consider a smooth affine variety . If we take a regular function and consider the section of

Then, we can take the derived pullback diagram

where is the zero section, constructing a derived critical locus of the regular function .

Example

Consider the affine variety

and the regular function given by . Then,

where we treat the last two coordinates as . The derived critical locus is then the derived scheme

Note that since the left term in the derived intersection is a complete intersection, we can compute a complex representing the derived ring as

where is the koszul complex.

Derived critical locus

Consider a smooth function where is smooth. The derived enhancement of , the derived critical locus, is given by the differential graded scheme where the underlying graded ring are the polyvector fields

and the differential is defined by contraction by .

Example

For example, if

we have the complex

representing the derived enhancement of .

Notes

  1. ^ also often called -ring spectra
  2. ^ section 1.2 of Eugster, J.; Pridham, J.P. (2021-10-25). "An introduction to derived (algebraic) geometry". arXiv:2109.14594 [math.AG].
  3. ^ Behrend, Kai (2002-12-16). "Differential Graded Schemes I: Perfect Resolving Algebras". arXiv:math/0212225.
  4. ^ Kontsevich, M. (1994-05-05). "Enumeration of rational curves via torus actions". arXiv:hep-th/9405035.
  5. ^ "Dg-scheme".

References

Read other articles:

Goddess of FirePoster promosi untuk Goddess of FireGenreKostum Romansa DramaDitulis olehKwon Soon-kyu Lee Seo-yoonSutradaraPark Sung-soo Jung Dae-yoonPemeranMoon Geun-youngLee Sang-yoonKim BumPenata musikLee Pil-hoNegara asalKorea SelatanBahasa asliKoreaJmlh. episode32ProduksiProduser eksekutifGo Dong-sun Kim Seung-moProduserKim Kwang-ilLokasi produksiKorea Selatan, JepangSinematografiLee Tae-hee Jo Seong-sooPenyuntingIm Gyeong-raeDurasi60 minit di Senin dan Selasa di 21:55 (KST)Rumah ...

 

Species of fungus Taphrina wiesneri Scientific classification Domain: Eukaryota Kingdom: Fungi Division: Ascomycota Class: Taphrinomycetes Order: Taphrinales Family: Taphrinaceae Genus: Taphrina Species: T. wiesneri Binomial name Taphrina wiesneri(Rathay) Mix Taphrina wiesneri is a plant pathogen causing witch's broom, or plant gall formations, on cherry trees (Prunus & Cerasus spp). It is an important pest species of the ornamental cherry Cerasus X yedoensis in Japan.[1] Lif...

 

Artikel ini bukan mengenai gowok. Untuk kegunaan lain, lihat Jamblang (disambiguasi). Jamblang Syzygium cumini TumbuhanJenis buahbuah berbiji Status konservasiRisiko rendahIUCN49487196 TaksonomiDivisiTracheophytaSubdivisiSpermatophytesKladAngiospermaeKladmesangiospermsKladeudicotsKladcore eudicotsKladSuperrosidaeKladrosidsKladmalvidsOrdoMyrtalesFamiliMyrtaceaeGenusSyzygiumSpesiesSyzygium cumini Skeels Tata namaBasionimMyrtus cumini (en) Sinonim taksonDaftar sumber:[1][2]&...

فيشال بهاردساج   معلومات شخصية الميلاد 4 أغسطس 1965 (59 سنة)[1]  مواطنة الهند  الحياة العملية المهنة مخرج أفلام،  ومغني،  وملحن،  وكاتب سيناريو،  وشاعر غنائي،  وكاتب أغاني،  ومخرج موسيقي  [لغات أخرى]‏،  ومنتج أفلام  المواقع IMDB صفحته على IMDB&#...

 

KuduKecamatanPeta lokasi Kecamatan KuduNegara IndonesiaProvinsiJawa TimurKabupatenJombangPemerintahan • CamatWiwik Eko RatnaPopulasi • Total29,718 jiwaKode Kemendagri35.17.17 Kode BPS3517170 Luas27,54 km²Desa/kelurahan11 Kudu adalah sebuah kecamatan di Kabupaten Jombang, Jawa Timur, Indonesia. Pada tahun 2001, sebagian wilayah Kecamatan Kudu dimekarkan menjadi Kecamatan Ngusikan. Geografi Secara Geografis Kecamatan Kudu merupakan dataran rendah dengan ketinggian ...

 

Qajar-era illustration of Iraj, Salm and Tur Iraj (Persian: ایرج, romanized: ʾīraj; Pahlavi: ērič; from Avestan: 𐬀𐬌𐬭𐬌𐬌𐬀 airiia, literally Aryan) is the seventh Shah of the Pishdadian dynasty, depicted in the Shahnameh. Based on Iranian mythology, he is the youngest son of Fereydun. In the Avestan legends, Pahlavi literature, Sasanian-based Persian sources, some Persian sources, and particularly in Shahnameh, he is considered the name-giver of the Iranian nation,...

Phrase used in antiquity to label the promontories of the Strait of Gibraltar For the Paul Theroux book, see The Pillars of Hercules (book). For the London pub, see Pillars of Hercules, Soho. The European Pillar of Hercules: the Rock of Gibraltar (foreground), with the North African shore and Jebel Musa in the background. Jebel Musa, one of the candidates for the North African Pillar of Hercules, as seen from Tarifa, at the other shore of the Strait of Gibraltar. Jebel Musa and the Rock of Gi...

 

Halaman ini berisi artikel tentang makhluk aneh mengerikan. Untuk kegunaan lain, lihat Monster (disambiguasi). Monster adalah makhluk yang bentuk atau rupanya sangat menyimpang dari yang biasa atau bisa juga makhluk yang berukuran raksasa. Dalam kebanyakan cerita, monster digambarkan sebagai makhluk yang jahat. Seiringnya dengan perkembangan zaman adapula yang menceritakannya sebagai makhluk yang bodoh (Frankenstein), monster yang baik seperti Hulk dan The Thing, maupun monster imut dan lucu ...

 

Species of bacterium Not to be confused with rickets. Rickettsia rickettsii Scientific classification Domain: Bacteria Phylum: Pseudomonadota Class: Alphaproteobacteria Order: Rickettsiales Family: Rickettsiaceae Genus: Rickettsia Species group: Spotted fever group Species: R. rickettsii Binomial name Rickettsia rickettsiiBrumpt, 1922 Rickettsia rickettsii is a Gram-negative, intracellular, coccobacillus bacterium that was first discovered in 1902.[1] Having a reduced genome, the...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

L'art des Seldjoukides d'Iran désigne l'art produit dans tout l'est du monde islamique, entre la prise de Bagdad (1055) et les invasions mongoles (fin du XIIIe siècle. Nomades d'origine turque (c’est-à-dire de Mongolie actuelle), les Seldjoukides déferlèrent sur le monde Islamique vers la fin du Xe siècle par l'est de l'Iran (Transoxiane et Khwarezm). Ils établirent peu à peu du pouvoir en jouant sur les inimitiés entre les différentes micro-dynasties de la région et s'...

 

Core ecoregion of Japan Taiheiyo evergreen forestsNametoko Ravine in Ashizuri-Uwakai National ParkEcologyRealmPalearcticBiometemperate broadleaf and mixed forestsBordersNihonkai evergreen forestsNihonkai montane deciduous forests,Taiheiyo montane deciduous forestsGeographyArea135,819 km2 (52,440 sq mi)CountryJapanConservationConservation statusCritical/endangeredProtected23,487 km² (17%)[1] The Taiheiyo evergreen forests is a temperate broadleaf forest ecoregion of Jap...

1958 song by Bobby Freeman Do You Wanna Dance redirects here. For the unrelated Barry Blue song of the same name, see Barry Blue. For the unrelated Janis Ian song “Do You Wanna Dance”, see Janis Ian (1978 album). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Do You Want to Dance – news · newspapers · books ·...

 

American legal scholar and political philosopher (born 1955) Robert P. GeorgeGeorge in 2018BornRobert Peter George (1955-07-10) July 10, 1955 (age 68)Morgantown, West Virginia, U.S.EducationSwarthmore College (BA)Harvard University (MTS, JD)Oxford University (DPhil, BCL, DCL)AwardsPresidential Citizens MedalCanterbury MedalIrving Kristol AwardPhilip Merrill AwardSidney Hook Memorial AwardJames Q. Wilson Award Bradley PrizeBarry PrizeEraContemporary philosophyRegionWestern philosophySchoo...

 

Rue Sainte-Anne Rue Sainte-Anne adalah sebuah jalan di arondisemen 1 dan 2 Paris, Prancis. Rue Sainte-Anne menerima nama ini untuk menghormati Ana dari Austria, Ratu Prancis dan istri Louis XIII[1]. Ini bukan pertama kalinya sebuah jalan memiliki nama ini di Paris.[2] Catatan ^ Promenades dans toutes les rues de Paris ^ Rue Sainte-Anne (Paris) Nouvelle-France (chaussée de la) Pranala luar Cari tahu mengenai Rue Sainte-Anne pada proyek-proyek Wikimedia lainnya: Definisi dan te...

コリントス地峡 コリントス地峡の位置(赤丸、ペロポネソス半島) コリントス地峡(コリントスちきょう、ギリシア語: Ισθμός της Κορίνθου ; 英: Isthmus of Corinth)は、ギリシャの本土とペロポネソス半島とをつなぐ地峡。コリンティアコス湾(イオニア海)とサロニコス湾(エーゲ海)に挟まれており、幅は約6km。コリントス運河によって2つの海は結ば...

 

2000 Canadian student suicide This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (October 2014) (Learn how and when to remove this message) Dawn-Marie May Ella WesleySchool photograph of Dawn-Marie Wesley, who committed suicide after intense bullyingBorn(1986-05-05)5 May 1986Mission, British Columbia, CanadaDied10 November 2000(2000-11-10) (aged 14)Mission, ...

 

Questa voce o sezione sull'argomento centri abitati della Campania non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Sciscianocomune LocalizzazioneStato Italia Regione Campania Città metropolitana Napoli AmministrazioneSindacoAntonio Ambrosino (Aria Nuova) dal 16-5-2023 TerritorioCoordinate40°55′N 14°29′E40°55′N, 14°29�...

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of programs broadcast by MyNetworkTV – news · newspapers · books · scholar · JSTOR (July 2020) (Learn how and when to remove this message) This is a list of programming which has been or will be carried on the American broadcast programming service MyNetworkTV. Current pro...

 

توطيد الثورة الإيرانية جزء من الثورة الإسلامية الإيرانية معلومات عامة التاريخ 14 فبراير 1979 - ديسمبر 1983[1] البلد إيران  الموقع إيران النتيجة • انتصار الحزب الجمهوري الإسلامي • توطيد الثورة على يد آية الله خميني • اجراء استفتاء وإنشاء جمهورية إيران الإسلامية • استقا�...