Approximate solution to Einstein's field equations
The Hartle–Thorne metric is an approximate solution of the vacuum Einstein field equations of general relativity[ 1] that describes the exterior of a slowly and rigidly rotating, stationary and axially symmetric body.[ 2]
The metric was found by James Hartle and Kip Thorne in the 1960s to study the spacetime outside neutron stars , white dwarfs and supermassive stars . It can be shown that it is an approximation to the Kerr metric (which describes a rotating black hole) when the quadrupole moment is set as
q
=
− − -->
a
2
a
M
3
{\displaystyle q=-a^{2}aM^{3}}
, which is the correct value for a black hole but not, in general, for other astrophysical objects.
Metric
Up to second order in the angular momentum
J
{\displaystyle J}
, mass
M
{\displaystyle M}
and quadrupole moment
q
{\displaystyle q}
, the
metric in spherical coordinates is given by[ 1]
g
t
t
=
− − -->
(
1
− − -->
2
M
r
+
2
q
r
3
P
2
+
2
M
q
r
4
P
2
+
2
q
2
r
6
P
2
2
− − -->
2
3
J
2
r
4
(
2
P
2
+
1
)
)
,
g
t
ϕ ϕ -->
=
− − -->
2
J
r
sin
2
-->
θ θ -->
,
g
r
r
=
1
+
2
M
r
+
4
M
2
r
2
− − -->
2
q
P
2
r
3
− − -->
10
M
q
P
2
r
4
+
1
12
q
2
(
8
P
2
2
− − -->
16
P
2
+
77
)
r
6
+
2
J
2
(
8
P
2
− − -->
1
)
r
4
,
g
θ θ -->
θ θ -->
=
r
2
(
1
− − -->
2
q
P
2
r
3
− − -->
5
M
q
P
2
r
4
+
1
36
q
2
(
44
P
2
2
+
8
P
2
− − -->
43
)
r
6
+
J
2
P
2
r
4
)
,
g
ϕ ϕ -->
ϕ ϕ -->
=
r
2
sin
2
-->
θ θ -->
(
1
− − -->
2
q
P
2
r
3
− − -->
5
M
q
P
2
r
4
+
1
36
q
2
(
44
P
2
2
+
8
P
2
− − -->
43
)
r
6
+
J
2
P
2
r
4
)
,
{\displaystyle {\begin{aligned}g_{tt}&=-\left(1-{\frac {2M}{r}}+{\frac {2q}{r^{3}}}P_{2}+{\frac {2Mq}{r^{4}}}P_{2}+{\frac {2q^{2}}{r^{6}}}P_{2}^{2}-{\frac {2}{3}}{\frac {J^{2}}{r^{4}}}(2P_{2}+1)\right),\\g_{t\phi }&=-{\frac {2J}{r}}\sin ^{2}\theta ,\\g_{rr}&=1+{\frac {2M}{r}}+{\frac {4M^{2}}{r^{2}}}-{\frac {2qP_{2}}{r^{3}}}-{\frac {10MqP_{2}}{r^{4}}}+{\frac {1}{12}}{\frac {q^{2}\left(8P_{2}^{2}-16P_{2}+77\right)}{r^{6}}}+{\frac {2J^{2}(8P_{2}-1)}{r^{4}}},\\g_{\theta \theta }&=r^{2}\left(1-{\frac {2qP_{2}}{r^{3}}}-{\frac {5MqP_{2}}{r^{4}}}+{\frac {1}{36}}{\frac {q^{2}\left(44P_{2}^{2}+8P_{2}-43\right)}{r^{6}}}+{\frac {J^{2}P_{2}}{r^{4}}}\right),\\g_{\phi \phi }&=r^{2}\sin ^{2}\theta \left(1-{\frac {2qP_{2}}{r^{3}}}-{\frac {5MqP_{2}}{r^{4}}}+{\frac {1}{36}}{\frac {q^{2}\left(44P_{2}^{2}+8P_{2}-43\right)}{r^{6}}}+{\frac {J^{2}P_{2}}{r^{4}}}\right),\end{aligned}}}
where
P
2
=
3
cos
2
-->
θ θ -->
− − -->
1
2
.
{\displaystyle P_{2}={\frac {3\cos ^{2}\theta -1}{2}}.}
See also
References