In mathematics , Grunsky's theorem , due to the German mathematician Helmut Grunsky , is a result in complex analysis concerning holomorphic univalent functions defined on the unit disk in the complex numbers . The theorem states that a univalent function defined on the unit disc, fixing the point 0, maps every disk |z| < r onto a starlike domain for r ≤ tanh π/4.
The radius of starlikeness of an univalent function f satisfying f (0) = 0 is the largest radius r for which the function f maps the open disk |z| < r into a starlike domain with respect to the origin.
Statement
Let f be a univalent holomorphic function on the unit disc D such that f (0) = 0. Then for all r ≤ tanh π/4, the image of the disc |z| < r is starlike with respect to 0, i.e. it is closed under multiplication by real numbers in (0,1).
An inequality of Grunsky
If f (z) is univalent on D with f (0) = 0, then
|
log
z
f
′
(
z
)
f
(
z
)
|
≤
log
1
+
|
z
|
1
−
|
z
|
.
{\displaystyle \left|\log {zf^{\prime }(z) \over f(z)}\right|\leq \log {1+|z| \over 1-|z|}.}
Taking the real and imaginary parts of the logarithm, this implies the two inequalities
|
z
f
′
(
z
)
f
(
z
)
|
≤
1
+
|
z
|
1
−
|
z
|
{\displaystyle \left|{zf^{\prime }(z) \over f(z)}\right|\leq {1+|z| \over 1-|z|}}
and
|
arg
z
f
′
(
z
)
f
(
z
)
|
≤
log
1
+
|
z
|
1
−
|
z
|
.
{\displaystyle \left|\arg {zf^{\prime }(z) \over f(z)}\right|\leq \log {1+|z| \over 1-|z|}.}
For fixed z , both these equalities are attained by suitable Koebe functions
g
w
(
ζ
)
=
ζ
(
1
−
w
¯
ζ
)
2
,
{\displaystyle g_{w}(\zeta )={\zeta \over (1-{\overline {w}}\zeta )^{2}},}
where |w| = 1.
Proof
Grunsky (1932) originally proved these inequalities based on extremal techniques of Ludwig Bieberbach . Subsequent proofs, outlined in Goluzin (1939) , relied on the Loewner equation . More elementary proofs were subsequently given based on Goluzin's inequalities , an equivalent form of Grunsky's inequalities (1939) for the Grunsky matrix .
For a univalent function g in z > 1 with an expansion
g
(
z
)
=
z
+
b
1
z
−
1
+
b
2
z
−
2
+
⋯
.
{\displaystyle g(z)=z+b_{1}z^{-1}+b_{2}z^{-2}+\cdots .}
Goluzin's inequalities state that
|
∑
i
=
1
n
∑
j
=
1
n
λ
i
λ
j
log
g
(
z
i
)
−
g
(
z
j
)
z
i
−
z
j
|
≤
∑
i
=
1
n
∑
j
=
1
n
λ
i
λ
j
¯
log
z
i
z
j
¯
z
i
z
j
¯
−
1
,
{\displaystyle \left|\sum _{i=1}^{n}\sum _{j=1}^{n}\lambda _{i}\lambda _{j}\log {g(z_{i})-g(z_{j}) \over z_{i}-z_{j}}\right|\leq \sum _{i=1}^{n}\sum _{j=1}^{n}\lambda _{i}{\overline {\lambda _{j}}}\log {z_{i}{\overline {z_{j}}} \over z_{i}{\overline {z_{j}}}-1},}
where the z i are distinct points with |z i | > 1 and λi are arbitrary complex numbers.
Taking n = 2. with λ1 = – λ2 = λ, the inequality implies
|
log
g
′
(
ζ
)
g
′
(
η
)
(
ζ
−
η
)
2
(
g
(
ζ
)
−
g
(
η
)
)
2
|
≤
log
|
1
−
ζ
η
¯
|
2
(
|
ζ
|
2
−
1
)
(
|
η
|
2
−
1
)
.
{\displaystyle \left|\log {g^{\prime }(\zeta )g^{\prime }(\eta )(\zeta -\eta )^{2} \over (g(\zeta )-g(\eta ))^{2}}\right|\leq \log {|1-\zeta {\overline {\eta }}|^{2} \over (|\zeta |^{2}-1)(|\eta |^{2}-1)}.}
If g is an odd function and η = – ζ, this yields
|
log
ζ
g
′
(
ζ
)
g
(
ζ
)
|
≤
|
ζ
|
2
+
1
|
ζ
|
2
−
1
.
{\displaystyle \left|\log {\zeta g^{\prime }(\zeta ) \over g(\zeta )}\right|\leq {|\zeta |^{2}+1 \over |\zeta |^{2}-1}.}
Finally if f is any normalized univalent function in D , the required inequality for f follows by taking
g
(
ζ
)
=
f
(
ζ
−
2
)
−
1
2
{\displaystyle g(\zeta )=f(\zeta ^{-2})^{-{1 \over 2}}}
with
z
=
ζ
−
2
.
{\displaystyle z=\zeta ^{-2}.}
Proof of the theorem
Let f be a univalent function on D with f (0) = 0. By Nevanlinna's criterion , f is starlike on |z| < r if and only if
ℜ
z
f
′
(
z
)
f
(
z
)
≥
0
{\displaystyle \Re {zf^{\prime }(z) \over f(z)}\geq 0}
for |z| < r . Equivalently
|
arg
z
f
′
(
z
)
f
(
z
)
|
≤
π
2
.
{\displaystyle \left|\arg {zf^{\prime }(z) \over f(z)}\right|\leq {\pi \over 2}.}
On the other hand, by the inequality of Grunsky above,
|
arg
z
f
′
(
z
)
f
(
z
)
|
≤
log
1
+
|
z
|
1
−
|
z
|
.
{\displaystyle \left|\arg {zf^{\prime }(z) \over f(z)}\right|\leq \log {1+|z| \over 1-|z|}.}
Thus if
log
1
+
|
z
|
1
−
|
z
|
≤
π
2
,
{\displaystyle \log {1+|z| \over 1-|z|}\leq {\pi \over 2},}
the inequality holds at z . This condition is equivalent to
|
z
|
≤
tanh
π
4
{\displaystyle |z|\leq \tanh {\pi \over 4}}
and hence f is starlike on any disk |z| < r with r ≤ tanh π/4.
References
Duren, P. L. (1983), Univalent functions , Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer-Verlag, pp. 95– 98, ISBN 0-387-90795-5
Goluzin, G.M. (1939), "Interior problems of the theory of univalent functions" , Uspekhi Mat. Nauk , 6 : 26– 89 (in Russian)
Goluzin, G. M. (1969), Geometric theory of functions of a complex variable , Translations of Mathematical Monographs, vol. 26, American Mathematical Society
Goodman, A.W. (1983), Univalent functions , vol. I, Mariner Publishing Co., ISBN 0-936166-10-X
Goodman, A.W. (1983), Univalent functions , vol. II, Mariner Publishing Co., ISBN 0-936166-11-8
Grunsky, H. (1932), "Neue Abschätzungen zur konformen Abbildung ein- und mehrfach zusammenhängender Bereiche (inaugural dissertation)" , SCHR. Math. Inst. U. Inst. Angew. Math. Univ. Berlin , 1 : 95– 140, archived from the original on 2015-02-11, retrieved 2011-12-07 (in German)
Grunsky, H. (1934), "Zwei Bemerkungen zur konformen Abbildung" , Jber. Deutsch. Math.-Verein. , 43 : 140– 143 (in German)
Hayman, W. K. (1994), Multivalent functions , Cambridge Tracts in Mathematics, vol. 110 (2nd ed.), Cambridge University Press, ISBN 0-521-46026-3
Nevanlinna, R. (1921), "Über die konforme Abbildung von Sterngebieten", Öfvers. Finska Vet. Soc. Forh. , 53 : 1– 21
Pommerenke, C. (1975), Univalent functions, with a chapter on quadratic differentials by Gerd Jensen , Studia Mathematica/Mathematische Lehrbücher, vol. 15, Vandenhoeck & Ruprecht