is a Subsystem error correcting code.[1] In a Subsystem code, information is encoded in a subsystem of a Hilbert space. Subsystem codes lend to simplified error correcting procedures unlike codes which encode information in the subspace of a Hilbert space.[2] This simplicity led to the first demonstration of fault tolerant circuits on a quantum computer.[3]
In computational complexity theory, bounded-error quantum polynomial time (BQP) is the class of decision problems solvable by a quantum computer in polynomial time, with an error probability of at most 1/3 for all instances.[4] It is the quantum analogue to the complexity classBPP. A decision problem is a member of BQP if there exists a quantum algorithm (an algorithm that runs on a quantum computer) that solves the decision problem with high probability and is guaranteed to run in polynomial time. A run of the algorithm will correctly solve the decision problem with a probability of at least 2/3.
is the invocation of quantum emulators, simulators or processors through the cloud. Increasingly, cloud services are being looked on as the method for providing access to quantum processing. Quantum computers achieve their massive computing power by initiating quantum physics into processing power and when users are allowed access to these quantum-powered computers through the internet it is known as quantum computing within the cloud.
(also referred to as XEB), is quantum benchmarking protocol which can be used to demonstrate quantum supremacy.[8] In XEB, a random quantum circuit is executed on a quantum computer multiple times in order to collect a set of samples in the form of bitstrings. The bitstrings are then used to calculate the cross-entropy benchmark fidelity () via a classical computer, given by
,
where is the number of qubits in the circuit and is the probability of a bitstring for an ideal quantum circuit . If , the samples were collected from a noiseless quantum computer. If , then the samples could have been obtained via random guessing.[9] This means that if a quantum computer did generate those samples, then the quantum computer is too noisy and thus has no chance of performing beyond-classical computations. Since it takes an exponential amount of resources to classically simulate a quantum circuit, there comes a point when the biggest supercomputer that runs the best classical algorithm for simulating quantum circuits can't compute the XEB. Crossing this point is known as achieving quantum supremacy; and after entering the quantum supremacy regime, XEB can only be estimated.[10]
is a no-go theorem that states: "No quantum error correcting code can have a continuous symmetry which acts transversely on physical qubits".[11] In other words, no quantum error correcting code can transversely implement a universal gate set. Since quantum computers are inherently noisy, quantum error correcting codes are used to correct errors that affect information due to decoherence. Decoding error corrected data in order to perform gates on the qubits makes it prone to errors. Fault tolerant quantum computation avoids this by performing gates on encoded data. Transversal gates, which perform a gate between two "logical" qubits each of which is encoded in N "physical qubits" by pairing up the physical qubits of each encoded qubit ("code block"), and performing independent gates on each pair, can be used to perform fault tolerant but not universal quantum computation because they guarantee that errors don't spread uncontrollably through the computation. This is because transversal gates ensure that each qubit in a code block is acted on by at most a single physical gate and each code block is corrected independently when an error occurs. Due to the Eastin–Knill theorem, a universal set like {H, S, CNOT, T} gates can't be implemented transversally. For example, the T gate can't be implemented transversely in the Steane code.[12] This calls for ways of circumventing Eastin–Knill in order to perform fault tolerant quantum computation. In addition to investigating fault tolerant quantum computation, the Eastin–Knill theorem is also useful for studying quantum gravity via the AdS/CFT correspondence and in condensed matter physics via quantum reference frame[13] or many-body theory.[14]
is the smallest quantum error correcting code that can protect a logical qubit from any arbitrary single qubit error.[15] In this code, 5 physical qubits are used to encode the logical qubit.[16] With and being Pauli matrices and the Identity matrix, this code's generators are . Its logical operators are and .[17] Once the logical qubit is encoded, errors on the physical qubits can be detected via stabilizer measurements. A lookup table that maps the results of the stabilizer measurements to the types and locations of the errors gives the control system of the quantum computer enough information to correct errors.[18]
is a method used to create a random variable whose expected value is the expected real part, where is a quantum state and is a unitary gate acting on the space of .[19] The Hadamard test produces a random variable whose image is in and whose expected value is exactly . It is possible to modify the circuit to produce a random variable whose expected value is .[19]
is a process that takes in multiple noisy quantum states and outputs a smaller number of more reliable quantum states. It is considered by many experts[20] to be one of the leading proposals for achieving fault tolerantquantum computation. Magic state distillation has also been used to argue [21] that quantum contextuality may be the "magic ingredient" responsible for the power of quantum computers.[22]
is an algorithm which runs on a realistic model of quantum computation, the most commonly used model being the quantum circuit model of computation.[24][25] A classical (or non-quantum) algorithm is a finite sequence of instructions, or a step-by-step procedure for solving a problem, where each step or instruction can be performed on a classical computer. Similarly, a quantum algorithm is a step-by-step procedure, where each of the steps can be performed on a quantum computer. Although all classical algorithms can also be performed on a quantum computer,[26]: 126 the term quantum algorithm is usually used for those algorithms which seem inherently quantum, or use some essential feature of quantum computation such as quantum superposition or quantum entanglement.
is a metric that measures the capabilities and error rates of a quantum computer. It expresses the maximum size of square quantum circuits that can be implemented successfully by the computer. The form of the circuits is independent from the quantum computer architecture, but compiler can transform and optimize it to take advantage of the computer's features. Thus, quantum volumes for different architectures can be compared.
(QIMP), is using quantum computing or quantum information processing to create and work with quantum images.[29][30]
Due to some of the properties inherent to quantum computation, notably entanglement and parallelism, it is hoped that QIMP technologies will offer capabilities and performances that surpass their traditional equivalents, in terms of computing speed, security, and minimum storage requirements.[30][31]
Quantum simulators permit the study of quantum system in a programmable fashion. In this instance, simulators are special purpose devices designed to provide insight about specific physics problems.[34][35][36] Quantum simulators may be contrasted with generally programmable "digital" quantum computers, which would be capable of solving a wider class of quantum problems.
In quantum information science, quantum state discrimination refers to the task of inferring the quantum state that produced the observed measurement probabilities.
More precisely, in its standard formulation, the problem involves performing some POVM on a given unknown state , under the promise that the state received is an element of a collection of states , with occurring with probability , that is, . The task is then to find the probability of the POVM correctly guessing which state was received. Since the probability of the POVM returning the -th outcome when the given state was has the form , it follows that the probability of successfully determining the correct state is .[37]
or quantum advantage, is the goal of demonstrating that a programmable quantum device can solve a problem that no classical computer can solve in any feasible amount of time (irrespective of the usefulness of the problem).[38][39][40] Conceptually, quantum supremacy involves both the engineering task of building a powerful quantum computer and the computational-complexity-theoretic task of finding a problem that can be solved by that quantum computer and has a superpolynomial speedup over the best known or possible classical algorithm for that task.[41][42] The term was coined by John Preskill in 2012,[43][44] but the concept of a quantum computational advantage, specifically for simulating quantum systems, dates back to Yuri Manin's (1980)[45] and Richard Feynman's (1981) proposals of quantum computing.[46] Examples of proposals to demonstrate quantum supremacy include the boson sampling proposal of Aaronson and Arkhipov,[47]D-Wave's specialized frustrated cluster loop problems,[48] and sampling the output of random quantum circuits.[49][50]
(QTM), or universal quantum computer, is an abstract machine used to model the effects of a quantum computer. It provides a simple model that captures all of the power of quantum computation—that is, any quantum algorithm can be expressed formally as a particular quantum Turing machine. However, the computationally equivalent quantum circuit is a more common model.[51][52]: 2
A qubit (/ˈkjuːbɪt/) or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples include the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two states can be taken to be the vertical polarization and the horizontal polarization. In a classical system, a bit would have to be in one state or the other. However, quantum mechanics allows the qubit to be in a coherent superposition of both states simultaneously, a property that is fundamental to quantum mechanics and quantum computing.
(or quantum trit), is a unit of quantum information that is realized by a 3-level quantum system, that may be in a superposition of three mutually orthogonal quantum states.[60]
The qutrit is analogous to the classical radix-3 trit, just as the qubit, a quantum system described by a superposition of two orthogonal states, is analogous to the classical radix-2 bit.
There is ongoing work to develop quantum computers using qutrits and qubits with multiple states.[61]
In quantum information and computation, the Solovay–Kitaev theorem says, roughly, that if a set of single-qubitquantum gates generates a densesubset of SU(2) then that set is guaranteed to fill SU(2) quickly, which means any desired gate can be approximated by a fairly short sequence of gates from the generating set. Robert M. Solovay initially announced the result on an email list in 1995, and Alexei Kitaev independently gave an outline of its proof in 1997.[62] Solovay also gave a talk on his result at MSRI in 2000 but it was interrupted by a fire alarm.[63] Christopher M. Dawson and Michael Nielsen call the theorem one of the most important fundamental results in the field of quantum computation.[64]
^ abSmith, Robert S.; Curtis, Michael J.; Zeng, William J. (2016-08-10). "A Practical Quantum Instruction Set Architecture". arXiv:1608.03355 [quant-ph].
^Manin, Yu. I. (1980). Vychislimoe i nevychislimoe [Computable and Noncomputable] (in Russian). Sov.Radio. pp. 13–15. Archived from the original on 2013-05-10. Retrieved 2013-03-04.
^Aaronson, Scott; Arkhipov, Alex (2011). "The computational complexity of linear optics". Proceedings of the forty-third annual ACM symposium on Theory of computing. STOC '11. New York, NY, USA: ACM. pp. 333–342. arXiv:1011.3245. doi:10.1145/1993636.1993682. ISBN9781450306911. S2CID681637.
^King, James; Yarkoni, Sheir; Raymond, Jack; Ozfidan, Isil; King, Andrew D.; Nevisi, Mayssam Mohammadi; Hilton, Jeremy P.; McGeoch, Catherine C. (2017-01-17). "Quantum Annealing amid Local Ruggedness and Global Frustration". arXiv:1701.04579 [quant-ph].
^Rubin, Nicholas C. (2016-10-21). "A Hybrid Classical/Quantum Approach for Large-Scale Studies of Quantum Systems with Density Matrix Embedding Theory". arXiv:1610.06910 [quant-ph].
^Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam (2014-11-14). "A Quantum Approximate Optimization Algorithm". arXiv:1411.4028 [quant-ph].
Hiroshi, Imai; Masahito, Hayashi, eds. (2006). Quantum Computation and Information: From Theory to Experiment. Topics in Applied Physics. Vol. 102. doi:10.1007/3-540-33133-6. ISBN978-3-540-33133-9.
Medali Prisoner of War Prisoner of War Tampak depan medali Jenis Medal Status Masih berlaku Statistik Ditetapkan pada Pub.L. 99–145, 99 United States Statutes at Large 665, 10 USC 1028, diresmikan November 8, 1985, diamendemen dari Pub.L. 101–189, diresmikan 29 November 1989,[1] diamandemen dari Pub.L. 112–239, diresmikan 2 Januari 2013. Tingkatan Lebih tinggi Angkatan Darat – Achievement MedalAngkatan Laut – Navy E RibbonAngkatan Udara – Organiza...
Fight Back to SchoolFight Back to School DVDSutradaraGordon ChanProduserWong JingDitulis olehBarry WongGordon ChanPemeranStephen ChowCheung ManNg Man-TatRoy CheungBarry WongSinematograferCheng Siu KeungDistributorWin's Movie Production & I/E Co. Ltd.Tanggal rilis1991Durasi100 minNegaraHong KongBahasaTionghoaSekuelFight Back to School IIIMDbInformasi di IMDb Fight Back To School (逃學威龍) adalah film komedi Hong Kong tahun 1991, dibintangi oleh Stephen Chow, Cheung Man, dan Ng Man-Tat...
Pour les articles homonymes, voir Union de la jeunesse communiste. Cet article est une ébauche concernant l’URSS, la politique et le communisme. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Union des jeunesses léninistes communistes(ru) Всесоюзный ленинский коммунистический союз молодёжи Logotype officiel. Présentation Premier secrétaire (ultime) Vladimir Z...
Gunting Mayo (Bahasa Inggris : Mayo scissors) merupakan instrumen bedah dalam kelas gunting berjenis gunting jaringan yang memiliki ciri yakni ujungnya agak tumpul, dan hal ini membedakan Gunting Mayo dari gunting bedah lain.Contoh Gunting Mayo yang memiliki panjang 15 cm dan berbahan Baja Nirkarat. Etimologi Gunting ini berasal dan dikembangkan oleh ahli bedah Mayo Clinic. Kegunaan Kegunaan Gunting Mayo adalah : Digunakan dalam pemotongan fasia gerota, uterus, payudara, dan jaringa...
Lollipop F四度空間Album studio karya Lollipop FDirilis9 November 2010 (2010-11-09)Direkam2010GenrePopLabelGold TyphoonKronologi Lollipop F 卒業紀念限定盤(2009)卒業紀念限定盤2009 四度空間(2010) Lollipop F (Hanzi tradisional: 四度空間) adalah album pertama dirilis oleh Lollipop F pada label rekaman Gold Typhoon, setelah band ini berganti nama mereka. Informasi Album Band Lollipop F telah pergi ke Hong Kong dan Korea, menembak untuk pemotretan untuk membuat tam...
Commonwealth Bank Tournament of Champions 2011 Sport Tennis Data 3 novembre – 6 novembre Edizione 3a (singolare) Superficie Cemento indoor Località Bali, Indonesia Campioni Singolare Ana Ivanović 2010 Il Commonwealth Bank Tournament of Champions 2011 è un torneo di tennis giocato sul cemento indoor. È la 3ª edizione dell'evento, che fa parte della categoria International nell'ambito del WTA Tour 2011. Il torneo si gioca all'International Convention Centre di Bali in Indonesia dal 3 al...
NBA professional basketball team season NBA professional basketball team season 1986–87 Indiana Pacers seasonHead coachJack RamsayGeneral managerDonnie WalshArenaMarket Square ArenaResultsRecord41–41 (.500)PlaceDivision: 4th (Central)Conference: 7th (Eastern)Playoff finishLost to Atlanta Hawks in East First Round (1-3)Stats at Basketball-Reference.comLocal mediaTelevisionWTTV–TV 4(Eddie Doucette, Bobby Slick Leonard)RadioWIBC–AM 1070(Greg Papa) < 1985–86 1987–88...
هنودمعلومات عامةنسبة التسمية الهند التعداد الكليالتعداد قرابة 1.21 مليار[1][2]تعداد الهند عام 2011ق. 1.32 مليار[3]تقديرات عام 2017ق. 30.8 مليون[4]مناطق الوجود المميزةبلد الأصل الهند البلد الهند الهند نيبال 4,000,000[5] الولايات المتحدة 3,982,398[6] الإمار...
No. 243 Squadron RAFActive20 Aug 1918 - 15 Mar 1919 12 Mar 1941 - 20 Jan 1942 1 Jun 1942 - 31 Oct 1944 15 Dec 1944 - 15 Apr 1946Country United KingdomBranch Royal Air ForceMotto(s)Swift in pursuitInsigniaSquadron Badge heraldryA seahorse holding a sword erectSquadron CodesNX (Apr 1939 - Sep 1939)SN (Jun 1942 - Oct 1944)Military unit No. 243 Squadron was a flying squadron of the Royal Air Force. Originally formed in August 1918 from two flights that had been part of the Royal Naval Air Servic...
2008 film by Sarjit Bains This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Cash and Curry film – news · newspapers · books · scholar · JSTOR (March 2017) (Learn how and when to remove this message) Cash & CurryPosterDirected bySarjit BainsWritten byChristine EdwardsManish PatelProduced byChristine Ed...
The relationship between poverty reduction and differing levels of welfare expense as a percentage of GDP[1] The effects of social welfare on poverty have been the subject of various studies.[1] Studies have shown that in welfare states, poverty decreases after countries adopt welfare programs.[2] Empirical evidence suggests that taxes and transfers considerably reduce poverty in most countries whose welfare states commonly constitute at least a fifth of GDP.[3]...
For waterfall in Shillong, see Bishop Falls (India). Town in Newfoundland and Labrador, CanadaBishop's FallsTown SealMotto(s): In Media Silva Maneo (Latin)In the center of the forest, I remainBishop's FallsLocation of Bishop's Falls in NewfoundlandCoordinates: 49°01′00″N 55°31′00″W / 49.01667°N 55.51667°W / 49.01667; -55.51667CountryCanadaProvinceNewfoundland and LabradorCensus division6Government • MayorBryan King • ...
Artikel ini menggunakan kata-kata yang berlebihan dan hiperbolis tanpa memberikan informasi yang jelas. Silakan buang istilah-istilah yang hiperbolis tersebut. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) PT Nojorono Tobacco InternationalSebelumnyaPT Nojorono Tobacco LimitedJenisSwastaIndustriRokokTembakauDidirikan14 Oktober 1932; 91 tahun lalu (1932-10-14)PendiriKo Djee Siong & Tan Djing ThayKantorpusatKabupaten Kudus, Jawa TengahProdukMinak DjinggoClas MildCl...
Graphics programming language This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article has an unclear citation style. The references used may be made clearer with a different or consistent style of citation and footnoting. (May 2014) (Learn how and when to remove this message) This article's lead section may be too short to adequately summarize the key points. Please consider expandin...
Freddie Bartholomew in Lord Fauntleroy (1936) Freddie Bartholomew, all'anagrafe Frederick Cecil Bartholomew (Dublino, 28 marzo 1924 – Sarasota, 23 gennaio 1992), è stato un attore, produttore televisivo e regista televisivo irlandese naturalizzato statunitense, tra i più popolari attori bambini del cinema. Indice 1 Biografia 1.1 Infanzia ed esordio 1.2 Carriera 1.3 Problemi giudiziari con la famiglia 1.4 Dopo Hollywood 2 Riconoscimenti 3 Filmografia 3.1 Cortometraggi 3.2 Feature films 4 T...
ユーリ・ショカルスキー作成による、ロシア帝国時代のアジアロシアに関する地図 ブロックハウス・エフロン百科事典 アジアロシア(英語: Asian Russia、ロシア語: Азиатская часть России)とは、ロシアの領土のうちアジアに分類される地域を指す名称である。 概要 アジアロシアの面積は約13,100,000km2であり、現代のロシア連邦全面積の約77%に当たる。2002...
Danilo CataldiCataldi con la Lazio nel 2020Nazionalità Italia Altezza180 cm Peso70 kg Calcio RuoloCentrocampista Squadra Fiorentina CarrieraGiovanili 1999-2006 Ottavia2006-2013 Lazio Squadre di club1 2012-2013 Lazio0 (0)2013-2014→ Crotone36 (4)2014-2017 Lazio47 (2)2017→ Genoa13 (0)2017-2018→ Benevento29 (1)2018-2024 Lazio141 (5)2024-→ Fiorentina4 (0) Nazionale 2012 Italia U-183 (0)2012 Italia U-191 (0)2013 Italia U-202 (1)2014-201...