Let (M, g) be a closed Kähler manifold of nonnegative holomorphic bisectional curvature. Then the universal cover of M, with its natural metric, is biholomorphically isometric to the metric product of complex Euclidean space, with some number of irreducible closed hermitian symmetric spaces with rank larger than one, with the product of some number of complex projective spaces, each of which has a Kähler metric of nonnegative holomorphic bisectional curvature.
In its algebro-geometric formulation, as proved by Mori but not by Siu and Yau, the result states that if M is an irreducible and nonsingular projective variety, defined over an algebraically closed fieldk, which has ample tangent bundle, then M must be isomorphic to the projective space defined over k. This version is known as the Hartshorne conjecture, after Robin Hartshorne.
References
Theodore Frankel. Manifolds with positive curvature. Pacific J. Math. 11 (1961), 165–174. doi:10.2140/pjm.1961.11.165
Shoshichi Kobayashi and Takushiro Ochiai. Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ. 13 (1973), 31–47. doi:10.1215/kjm/1250523432
Ngaiming Mok. The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature. J. Differential Geom. 27 (1988), no. 2, 179–214. doi:10.4310/jdg/1214441778
Shigefumi Mori. Projective manifolds with ample tangent bundles. Ann. of Math. (2) 110 (1979), no. 3, 593–606. doi:10.2307/1971241