Share to: share facebook share twitter share wa share telegram print page

Flyby anomaly

Unsolved problem in physics:
What causes the unexpected change in acceleration for flybys of spacecraft?

The flyby anomaly is a discrepancy between current scientific models and the actual increase in speed (i.e. increase in kinetic energy) observed during a planetary flyby (usually of Earth) by a spacecraft. In multiple cases, spacecraft have been observed to gain greater speed than scientists had predicted, but thus far no convincing explanation has been found. This anomaly has been observed as shifts in the S-band and X-band Doppler and ranging telemetry. The largest discrepancy noticed during a flyby is tiny, 13.46 mm/s.[1]

Observations

Gravitational assists are valuable techniques for Solar System exploration. Because the success of such flyby maneuvers depends on the exact geometry of the trajectory, the position and velocity of a spacecraft during its encounter with a planet is continually tracked with great precision by earth telemetry, e.g. via the Deep Space Network (DSN).

Range residuals during the Earth flyby of NEAR
During its flyby, MESSENGER did not observe any anomalies

The flyby anomaly was first noticed during a careful inspection of DSN Doppler data shortly after the Earth flyby of the Galileo spacecraft on 8 December 1990. While the Doppler residuals (observed minus computed data) were expected to remain flat, the analysis revealed an unexpected 66 mHz shift, which corresponds to a velocity increase of 3.92 mm/s at perigee. Investigations of this effect at the Jet Propulsion Laboratory (JPL), the Goddard Space Flight Center (GSFC) and the University of Texas have not yielded a satisfactory explanation.

No such anomaly was detected after the second Earth flyby of Galileo in December 1992, where the measured velocity decrease matched that expected from atmospheric drag at the lower altitude of 303 km. However, the drag estimates had large error bars, and so an anomalous acceleration could not be ruled out.[2]

On 23 January 1998 the Near Earth Asteroid Rendezvous (NEAR) spacecraft experienced an anomalous velocity increase of 13.46 mm/s after its Earth encounter. Cassini–Huygens gained around 0.11 mm/s in August 1999, and Rosetta gained 1.82 mm/s after its Earth flyby in March 2005.

An analysis of the MESSENGER spacecraft (studying Mercury) did not reveal any significant unexpected velocity increase. This may be because MESSENGER both approached and departed Earth symmetrically about the equator (see data and proposed equation below). This suggests that the anomaly may be related to Earth's rotation.

In November 2009, ESA's Rosetta spacecraft was tracked closely during flyby in order to precisely measure its velocity, in an effort to gather further data about the anomaly, but no significant anomaly was found.[3][4]

The 2013 flyby of Juno on the way to Jupiter yielded no anomalous acceleration.[5]

In 2018, a careful analysis of the trajectory of the presumed interstellar asteroid ʻOumuamua revealed a small excess velocity as it receded from the Sun. Initial speculation suggested that the anomaly was due to outgassing, though none had been detected.[6]

Summary of some Earth-flyby spacecraft is provided in table below.[3][7]

Craft
Data
Galileo I Galileo II NEAR Cassini Rosetta-I MESSENGER Rosetta-II Rosetta-III Juno Hayabusa2 OSIRIS-REx[8] BepiColombo[9]
Date 1990-12-08 1992-12-08 1998-01-23 1999-08-18 2005-03-04 2005-08-02 2007-11-13 2009-11-13 2013-10-09 2015-12-03 2017-09-22 2020-04-10
Speed at infinity, km/s 8.949 8.877 6.851 16.01 3.863 4.056 4.7
Speed at perigee, km/s 13.738 8.877 12.739 19.03 10.517 10.389 12.49 13.34 14.93 10.3 8.5
Impact parameter, km 11261 12850 8973 22680.49 22319 19064
Minimal altitude, km 956 303 532 1172 1954 2336 5322 2483 561[10] 3090[11] 17237 12677
Spacecraft mass, kg 2497.1 2223.0 730.40 4612.1 2895.2 1085.6 2895 2895 ~2720 590 4000
Trajectory inclination to equator, degrees 142.9 138.9 108.0 25.4 144.9 133.1
Deflection angle, degrees 47.46 51.1 66.92 19.66 99.396 94.7 80
Speed increment at infinity, mm/s 3.92±0.08 −4.60±1.00 13.46±0.13 −2±1 1.82±0.05 0.02±0.01 ~0 ~0 0±0.8[5] ? ? ?
Speed increment at perigee, mm/s 2.560±0.050 −9.200±0.600 7.210±0.0700 −1.700±0.9000 0.670±0.0200 0.008±0.004 ~0.000±0.000 −0.004±0.044 ? ? ?
Gained energy, J/kg 35.1±0.7 92.2±0.9 7.03±0.19 ? ? ?

Anderson's empirical relation

An empirical equation for the anomalous flyby velocity change was proposed in 2008 by J. D. Anderson et al.:[12]

where ωE is the angular frequency of the Earth, RE is the Earth radius, and φi and φo are the inbound and outbound equatorial angles of the spacecraft. This formula was derived later by Jean Paul Mbelek from special relativity, leading to one of the possible explanations of the effect.[13] This does not, however, consider the SSN residuals – see "Possible explanations" below.

Possible explanations

There have been a number of proposed explanations of the flyby anomaly, including:

  • A postulated consequence of the assumption that the speed of light is isotropic in all frames, and invariant in the method used to measure the velocity of the space probes by means of the Doppler effect.[14] The inconsistent anomalous values measured: positive, null or negative are simply explained relaxing this assumption. During flyby maneuvers the velocity components of the probe in the direction of the observer Vo are derived from the relative displacement df of the radiofrequency f transmitted by the probe, multiplied by the local speed of the light c by the Doppler effect: Vo = (df / f) c. According to the Céspedes-Curé hypothesis,[15] the movement through variable gravitational energy density fields produces slight variations of the refractive index n of space and therefore of the speed of light c which leads to unaccounted corrections of the Doppler data that are based on an invariant c. This leads to incorrect estimates of the speed or energy change in the flyby maneuver on the Earth's frame of reference.
  • Unaccounted-for transverse Doppler effect—i.e. the redshift of light source with zero radial and non-zero tangential velocity.[13] However, this cannot explain the similar anomaly in the ranging data.
  • A dark-matter halo around Earth.[16]
  • The impact of general relativity, in its weak-field and linearized form yielding gravitomagnetic phenomena like frame-dragging, has been investigated as well:[17] it turns out to be unable to account for the flyby anomaly.
  • The classical time-retarded gravity explanation proposed by Joseph C. Hafele.[18]
    SSN range residuals for the NEAR flyby with range, delay
  • Range-proportional excess delay of the telemetry signal revealed by the United States Space Surveillance Network range data in the NEAR flyby.[19] This delay, accounting for the anomaly in both Doppler and range data, as well as the trailing Doppler oscillations, to within 10–20%, points to chirp modes in the reception due to the Doppler rate, predicting a positive anomaly only when the tracking by DSN is interrupted around perigee, and zero or negative anomaly if tracked continuously. No anomaly should occur in Doppler tracked by non-DSN stations.[20]
  • The action of a topological torsion current predicting flyby anomalies in retrograde direction, but null-effect when spacecraft approach the planet in prograde direction with respect to the planetary sense of rotation.[21]
  • The analysis of the Juno flyby looked at analysis errors that could potentially mimic the flyby anomaly. They found that a high-precision gravity field of at least 50×50 coefficients was needed for accurate flyby predictions. Use of a lower-precision gravity field (such as a model with 10×10 coefficients, sufficient for launch analysis), would yield a 4.5 mm/s velocity error.[5]

Some missions designed to study gravity, such as MICROSCOPE and STEP, are designed to make extremely accurate gravity measurements and may shed some light on the anomaly.[22] However, MICROSCOPE has completed its mission, finding nothing anomalous,[23] and STEP is yet to fly.

See also

References

  1. ^ "ESA's Rosetta spacecraft may help unravel cosmic mystery". European Space Agency. November 12, 2009. Retrieved 2024-08-11.
  2. ^ Edwards, C.; Anderson, J; Beyer, P; Bhaskaran, S.; Borders, J.; DiNardo, S.; Folkner, W.; Haw, R.; Nandi, S.; Nicholson, F.; 0ttenhoff, C.; Stephens, S. (1993-08-16). Tracking Galileo at Earth-2 Perigee Using The Tracking and Data Relay Satellite System (PDF) (Report). CiteSeerX 10.1.1.38.4256. hdl:2014/34792. Archived (PDF) from the original on 2022-04-18.{{cite report}}: CS1 maint: numeric names: authors list (link). The two [measurement] methods yielded similar fits to the data. Within an uncertainty of eight percent, both methods yielded a decrease in velocity along track of −5.9±0.2 mm/s. A priori predictions for the drag-induced velocity change, based on the Jacchia–Roberts model, were −6.2±4.0 mm/s [5], clearly consistent with the observed velocity change. By contrast, DSN data from the December 1990 Earth flyby, at altitude 956 km, indicated an unexplained increase in along-track velocity of 4 mm/s, after accounting for the much smaller drag effects. Given the uncertainty in drag models, we cannot conclusively rule out the possibility that a similar increase occurred at Earth 2. For example, an unmodeled increase of 4 mm/s and a drag decrease of −10 mm/s would be compatible with our results and our a priori atmospheric model. Significantly larger anomalous velocity increases, however, would appear inconsistent with the drag model.
  3. ^ a b "Mystery remains: Rosetta fails to observe swingby anomaly". ESA. Archived from the original on 2009-12-23.
  4. ^ J. Biele (2012). "Navigation of the interplanetary Rosetta and Philae spacecraft and the determination of the gravitational field of comets and asteroids - (DLR) @ TU München, 2012" (PDF). Archived from the original (PDF) on 2014-11-29. Retrieved 2014-11-18.
  5. ^ a b c Thompson, Paul F.; Matthew Abrahamson; Shadan Ardalan; John Bordi (2014). Reconstruction of Earth flyby by the Juno spacecraft. 24th AAS/AIAA Space Flight Mechanics Meeting. Santa Fe, NM: AAS. pp. 14–435.
  6. ^ Is the Interstellar Asteroid Really a Comet?
  7. ^ Anderson, John D.; James K. Campbell; Michael Martin Nieto (July 2007), "The energy transfer process in planetary flybys", New Astronomy, 12 (5): 383–397, arXiv:astro-ph/0608087, Bibcode:2007NewA...12..383A, doi:10.1016/j.newast.2006.11.004, S2CID 15913052
  8. ^ Stephen Clark (September 22, 2017). "OSIRIS-REx asteroid mission receives gravitational boost from planet Earth". Spaceflight Now.
  9. ^ "BEPICOLOMBO EARTH FLYBY".
  10. ^ NASA’S JUNO SPACECRAFT RETURNS 1ST FLYBY IMAGES OF EARTH WHILE SAILING ON TO JUPITER
  11. ^ Hayabusa2 Earth Swing-by Result
  12. ^ Anderson; et al. (7 March 2008). "Anomalous Orbital-Energy Changes Observed during Spacecraft Flybys of Earth" (PDF). Physical Review Letters. 100 (9): 091102. Bibcode:2008PhRvL.100i1102A. doi:10.1103/physrevlett.100.091102. PMID 18352689. Archived from the original (PDF) on 4 June 2016. Retrieved 15 February 2011.
  13. ^ a b Mbelek, J. P. (2009). "Special relativity may account for the spacecraft flyby anomalies". arXiv:0809.1888 [qr-qc].
  14. ^ Greaves, Eduardo D.; Bracho, Carlos; Mikoss, Imre (2020). "A Solution to the Flyby Anomaly Riddle". Progress in Physics. 16 (1): 49.
  15. ^ Cespedes-Cure, Jorge (2002). Einstein on Trial or Metaphysical Principles of Natural Philosophy (1st ed.). Venezuela: et al. Organization. ISBN 0-9713873-0-3.
  16. ^ Adler, S. L. (2009), "Can the flyby anomaly be attributed to Earth-bound dark matter?", Physical Review D, 79 (2): 023505, arXiv:0805.2895, Bibcode:2009PhRvD..79b3505A, doi:10.1103/PhysRevD.79.023505, S2CID 13152802
  17. ^ Iorio, L. (2009). "The Effect of General Relativity on Hyperbolic Orbits and Its Application to the Flyby Anomaly". Scholarly Research Exchange. 2009: 7695. arXiv:0811.3924. Bibcode:2009ScReE2009.7695I. doi:10.3814/2009/807695.
  18. ^ Hafele, Joseph C. (April 2013). "Causal Version of Newtonian Theory by Time-Retardation of the Gravitational Field Explains the Flyby Anomalies" (PDF). Progress in Physics. 2 (2): 3. Bibcode:2013PrPh....9b...3H. ISSN 1555-5534.
  19. ^ Antreasian, Peter G.; Guinn, Joseph R. (1998-08-10). Investigations into the Unexpected Delta-V Increase During the Earth Gravity Assist of GALILEO and NEAR (PDF). AIAA/AAS Astrodynamics Specialist Conference and Exhibition. Boston, Massachusetts: AIAA. CiteSeerX 10.1.1.613.5871. hdl:2014/20322. AIAA 98-4287. Archived (PDF) from the original on 2022-01-19. Retrieved 2017-05-06.
  20. ^ Guruprasad, V. (2015). "Observational evidence for travelling wave modes bearing distance proportional shifts". EPL. 110 (5): 54001. arXiv:1507.08222. Bibcode:2015EL....11054001G. doi:10.1209/0295-5075/110/54001. S2CID 42285652.
  21. ^ Pinheiro, Mario J. (2016). "Some effects of topological torsion currents on spacecraft dynamics and the flyby anomaly". Monthly Notices of the Royal Astronomical Society. 461 (4): 3948–3953. arXiv:1606.00691. Bibcode:2016MNRAS.461.3948P. doi:10.1093/mnras/stw1581.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  22. ^ Páramos, Jorge; Hechenblaikner, G. (2013). "Probing the Flyby Anomaly with the future STE-QUEST mission". Planetary and Space Science. 79–80: 76–81. arXiv:1210.7333. Bibcode:2013P&SS...79...76P. doi:10.1016/j.pss.2013.02.005. ISSN 0032-0633. S2CID 119287334.
  23. ^ Touboul, P.; Métris, G.; Rodrigues, M.; Bergé, J.; Robert, A.; Baghi, Q.; et al. (2022). "MICROSCOPE Mission: Final Results of the Test of the Equivalence Principle". Physical Review Letters. 129 (12): 121102. arXiv:2209.15487. Bibcode:2022PhRvL.129l1102T. doi:10.1103/PhysRevLett.129.121102. PMID 36179190. S2CID 252468544.

Literature

Read other articles:

Río CipresesUbicación geográficaCuenca Cuenca del río MauleNacimiento Laguna La InvernadaDesembocadura Río MauleCoordenadas 35°48′32″S 70°50′14″O / -35.808888888889, -70.837222222222Ubicación administrativaPaís ChileDivisión Región del MauleCuerpo de agua(Sub)Cuenca nr. 073-06Mapa de localización Cuenca alta del río Maule, la 073-0 y 073-1 del inventario de cuencas de Chile.[editar datos en Wikidata] El río Cipreses es un curso natural de agua que …

Artikel ini bukan mengenai Kecamatan Lengkong, Bandung.LengkongKecamatanLengkongPeta lokasi Kecamatan LengkongTampilkan peta Kabupaten SukabumiLengkongLengkong (Jawa Barat)Tampilkan peta Jawa BaratLengkongLengkong (Jawa)Tampilkan peta JawaLengkongLengkong (Indonesia)Tampilkan peta IndonesiaKoordinat: 7°07′52″S 106°41′32″E / 7.131020096927495°S 106.6922417594217°E / -7.131020096927495; 106.6922417594217Koordinat: 7°07′52″S 106°41′32″E / ࿯…

Clifton Pueblo Lago Cranberry CliftonUbicación en el condado de St. Lawrence y en el estado de Nueva York Ubicación de Nueva York en EE. UU.Coordenadas 44°12′49″N 74°56′57″O / 44.213611111111, -74.949166666667Entidad Pueblo • País  Estados Unidos • Estado  Nueva York • Condado St. LawrenceSuperficie   • Total 389.4 km² • Tierra 250 km² • Agua (10.13%) 39.4 km²Altitud   • Media 506 m s. n. m.…

WWE pay-per-view and livestreaming event Clash of ChampionsPromotional poster featuring Kevin Owens, Charlotte, Rusev, and The New Day (Kofi Kingston, Xavier Woods, and Big E)PromotionWWEBrand(s)RawDateSeptember 25, 2016CityIndianapolis, IndianaVenueBankers Life FieldhouseAttendance13,467WWE Network event chronology ← PreviousCruiserweight Classic Finale Next →No Mercy Clash of Champions chronology ← PreviousFirst Next →2017 The 2016 Clash of Champions was the inaugur…

Eastern Catholic church Syro-Malabar redirects here. For other uses, see Syro-Malabar (disambiguation). This article is about the denomination. For the people, see Syrian Catholics of Malabar. This article is about the Church based in India. For the Church based in the Levant, see Syriac Catholic Church. Not to be confused with Syro-Malankara Catholic Church. Syro-Malabar Catholic ChurchSyriac: ܥܸܕܬܵܐ ܕܡܲܠܲܒܵܪ ܣܘܼܪܝܵܝܵܐMalayalam: സീറോ മലബാർ സഭThe Mar …

1933 film Hold the PressDirected byPhil RosenWritten byHorace McCoyStarringTim McCoyShirley GreyWheeler OakmanCinematographyBenjamin KlineEdited byOtto MeyerProductioncompanyColumbia PicturesRelease date October 25, 1933 (1933-10-25) (US)[1] Running time63 minutesCountryUnited StatesLanguageEnglish Hold the Press is a 1933 American pre-Code crime drama film, directed by Phil Rosen. It stars Tim McCoy, Shirley Grey, and Wheeler Oakman, and was released on October 25, 19…

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يناير 2019) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ي…

Family of true bugs Termitaphididae Termitaradus mitnicki female in Dominican amber Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Hemiptera Suborder: Heteroptera Superfamily: Aradoidea Family: TermitaphididaeMyers, 1924 Genera Termitaphis Termitaradus Termitaphididae, occasionally called termite bugs,[1] is a small tropicopolitan family of true bugs placed in the superfamily Aradoidea. Typically members of Termitaphididae are small…

Golf tournament2020 PGA ChampionshipTournament informationDatesAugust 6–9, 2020LocationSan Francisco, California37°43′26″N 122°29′35″W / 37.724°N 122.493°W / 37.724; -122.493Course(s)TPC Harding ParkOrganized byPGA of AmericaTour(s) PGA Tour European Tour Japan Golf Tour StatisticsPar70Length7,234 yards (6,615 m)Field156 players, 79 after cutCut141 (+1)Prize fund$11,000,000  €8,261,591Winner's share$1,980,000€1,667,086Champion Collin Morik…

劉喬方112mountainyam 2020秋冬系列發布會女演员罗马拼音Lau Yuk Chui[1]英文名Rain昵称玉翠、牛肉碎、人民女俠、大話翠别名劉喬方[2]国籍 中华人民共和国(香港)民族漢族籍贯 中国廣東惠陽出生 (1966-12-11) 1966年12月11日(56歲)[1] 英屬香港职业演員、歌手语言粵語、英語、普通話教育程度香港演藝學院表演系深造文憑母校福德學校香港四邑商工總會黃棣珊

KEK

Untuk kegunaan lain, lihat Kek. Organisasi Penelitian Akselerator Energi Tinggi高エネルギー加速器研究機構Tanggal pendirian1 April 1997Kantor pusatTsukuba, Ibaraki, JepangDirektur JenderalAtsuto SuzukiAfiliasiKementerian Pendidikan, Budaya, Olahraga, Sains dan TeknologiSitus webhttp://www.kek.jp/en/ Organisasi Penelitian Akselerator Energi Tinggi (高エネルギー加速器研究機構code: ja is deprecated , Kō Enerugī Kasokuki Kenkyū Kikō), yang dikenal sebagai KEK, adalah org…

2013 soundtrack album by Devi Sri PrasadAttarintiki DarediOfficial Soundtrack Album Disc CoverSoundtrack album by Devi Sri PrasadReleased19 July 2013Recorded2013GenreFeature film soundtrackLength24:53LanguageTeluguLabelAditya MusicProducerDevi Sri PrasadDevi Sri Prasad chronology Singam II(2013) Attarintiki Daredi(2013) Bhai(2013) Attarintiki Daredi is the feature film soundtrack of the 2013 film of the same name starring Pawan Kalyan, Samantha Ruth Prabhu and Pranitha Subhash. Directed …

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) شيآن إم إيه 600معلومات عامةالنوع طائرة ركاببلد الأصل الصينالتطوير والتصنيعالصانع شركة شيآن لصناعة الطائرا…

FNSEALogo. « Un syndicalisme de solutions »HistoireFondation 1946CadreSigle FNSEAType organisation patronaleForme juridique Organisation patronale françaiseSiège 11 rue de la Baume 75008 ParisPays  FranceLangue FrançaisOrganisationMembres 212 000 (2016)Président Arnaud Rousseau (depuis 2023)Budget 12 000 000 € (2016)Site web www.fnsea.frmodifier - modifier le code - modifier Wikidata La Fédération nationale des syndicats d'exploitants agricoles (FNSEA), fo…

Renaissance painter from Prince-Bishopric of Liège Lambert LombardBorn1505Died1566 (aged 60–61)Known forPainting Les Femmes Vertueuses Lambert Lombard (c. 1505 – August 1566) was a Renaissance painter, architect and theorist for the Prince-Bishopric of Liège. During his career he worked for Jan Gossaert in Middelburg and trained Frans Floris. Biography Lombard was born in Liège, where in 1532 he became court painter and architect. A few paintings and many drawings have b…

Non-departmental public body Sport EnglandFounded1996; 27 years ago (1996)FounderDepartment for Culture, Media and SportTypeNon-departmental public bodyHeadquartersLoughborough, United KingdomArea served EnglandProductFundingKey peopleTim Hollingsworth, Chief ExecutiveWebsitewww.sportengland.org Sport England is a non-departmental public body under the Department for Culture, Media and Sport. Its role is to build the foundations of a community sport system by working with natio…

Public transport in Pyongyang, North KoreaPyongyang TramOlder Tatra T6B5 vehicles on tram line 1OverviewLocale PyongyangTransit typeTramNumber of lines4Line number1, 2, 3, KumsusanOperationBegan operation1989Operator(s)Guidance Bureau of Passenger Service in Pyongyang[1]CharacterAt-gradeTrain length2 car multiple unit, 3 section articulated tramTechnicalSystem length53.5 km (33 mi)Track gauge1,435 mm (4 ft 8+1⁄2 in)1,000 mm (3 ft 3+3⁄8 …

Canary yellow redirects here. For the color, see Yellow. For the bird, see Yellow canary. Auramine O Solid Auramine O Auramine O in aqueous solution Names IUPAC name bis[4-(dimethylamino)phenyl]methaniminium chloride Other names auramine hydrochloride, basic yellow 2, pyocatanium aureum, aizen auramine, pyoktanin yellow, canary yellow, pyoktanin, or C.I. 41000 Identifiers CAS Number 2465-27-2 Y 3D model (JSmol) Interactive imageInteractive image ChemSpider 16254 Y ECHA InfoCard 100.017…

2011 Japanese visual novel Imouto Paradise! Onii-chan to Go nin no Imouto no Ecchi Shimakuri na MainichiImouto Paradise! visual novel cover妹ぱらだいす! 〜お兄ちゃんと5人の妹のエッチしまくりな毎日〜(Imōto Paradaisu! 〜Onii-chan to Go nin no Imouto no Ecchi Shimakuri na Mainichi〜)GenreHarem, Incest GameDeveloperMoonstone CherryPublisherMoonstone Cherry (PC)M-Trix (Android) Dennou Club (DVD Player)MangaGamer (PC)GenreEroge, Visual novelPlatformWindows, Android, DVD …

City in Minnesota, United States City in Minnesota, United StatesHackensackCityNickname: Home of Paul Bunyan's SweetheartLocation of Hackensackwithin Cass County, MinnesotaCoordinates: 46°55′36″N 94°31′32″W / 46.92667°N 94.52556°W / 46.92667; -94.52556CountryUnited StatesStateMinnesotaCountyCassArea[1] • Total1.03 sq mi (2.67 km2) • Land1.02 sq mi (2.64 km2) • Water0.01 sq …

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 3.12.150.151