Fast multipole method

The fast multipole method (FMM) is a numerical technique that was developed to speed up the calculation of long-ranged forces in the n-body problem. It does this by expanding the system Green's function using a multipole expansion, which allows one to group sources that lie close together and treat them as if they are a single source.[1]

The FMM has also been applied in accelerating the iterative solver in the method of moments (MOM) as applied to computational electromagnetics problems,[2] and in particular in computational bioelectromagnetism. The FMM was first introduced in this manner by Leslie Greengard and Vladimir Rokhlin Jr.[3] and is based on the multipole expansion of the vector Helmholtz equation. By treating the interactions between far-away basis functions using the FMM, the corresponding matrix elements do not need to be explicitly stored, resulting in a significant reduction in required memory. If the FMM is then applied in a hierarchical manner, it can improve the complexity of matrix-vector products in an iterative solver from to in finite arithmetic, i.e., given a tolerance , the matrix-vector product is guaranteed to be within a tolerance The dependence of the complexity on the tolerance is , i.e., the complexity of FMM is . This has expanded the area of applicability of the MOM to far greater problems than were previously possible.

The FMM, introduced by Rokhlin Jr. and Greengard has been said to be one of the top ten algorithms of the 20th century.[4] The FMM algorithm reduces the complexity of matrix-vector multiplication involving a certain type of dense matrix which can arise out of many physical systems.

The FMM has also been applied for efficiently treating the Coulomb interaction in the Hartree–Fock method and density functional theory calculations in quantum chemistry.

Sketch of the Algorithm

Fast Multipole Method - interpolation of a pole at x=3 with an order-5 Chebyshev polynomial

In its simplest form, the fast multipole method seeks to evaluate the following function:

,

where are a set of poles and are the corresponding pole weights on a set of points with . This is the one-dimensional form of the problem, but the algorithm can be easily generalized to multiple dimensions and kernels other than .

Naively, evaluating on points requires operations. The crucial observation behind the fast multipole method is that if the distance between and is large enough, then is well-approximated by a polynomial. Specifically, let be the Chebyshev nodes of order and let be the corresponding Lagrange basis polynomials. One can show that the interpolating polynomial:

converges quickly with polynomial order, , provided that the pole is far enough away from the region of interpolation, and . This is known as the "local expansion".

The speed-up of the fast multipole method derives from this interpolation: provided that all the poles are "far away", we evaluate the sum only on the Chebyshev nodes at a cost of , and then interpolate it onto all the desired points at a cost of :

Since , where is the numerical tolerance, the total cost is .

To ensure that the poles are indeed well-separated, one recursively subdivides the unit interval such that only poles end up in each interval. One then uses the explicit formula within each interval and interpolation for all intervals that are well-separated. This does not spoil the scaling, since one needs at most levels within the given tolerance.

See also

References

  1. ^ Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational Physics Vol. 60, pp. 187–207.
  2. ^ Nader Engheta, William D. Murphy, Vladimir Rokhlin, and Marius Vassiliou (1992), “The Fast Multipole Method for Electromagnetic Scattering Computation,” IEEE Transactions on Antennas and Propagation 40, 634–641.
  3. ^ "The Fast Multipole Method". Archived from the original on 2011-06-03. Retrieved 2010-12-10.
  4. ^ Cipra, Barry Arthur (May 16, 2000). "The Best of the 20th Century: Editors Name Top 10 Algorithms". SIAM News. 33 (4). Society for Industrial and Applied Mathematics: 2. Retrieved February 27, 2019.

Free software

  • Puma-EM A high performance, parallelized, open source Method of Moments / Multilevel Fast Multipole Method electromagnetics code.
  • KIFMM3d The Kernel-Independent Fast Multipole 3d Method (kifmm3d) is a new FMM implementation which does not require the explicit multipole expansions of the underlying kernel, and it is based on kernel evaluations.
  • PVFMM A optimized parallel implementation of KIFMM for computing potentials from particle and volume sources.
  • FastBEM Free fast multipole boundary element programs for solving 2D/3D potential, elasticity, stokes flow and acoustic problems.
  • FastFieldSolvers maintains the distribution of the tools, called FastHenry and FastCap, developed at M.I.T. for the solution of Maxwell equations and extraction of circuit parasites (inductance and capacitance) using the FMM.
  • ExaFMM ExaFMM is a CPU/GPU capable 3D FMM code for Laplace/Helmholtz kernels that focuses on parallel scalability.
  • ScalFMM Archived 2017-05-02 at the Wayback Machine ScalFMM is a C++ software library developed at Inria Bordeaux with high emphasis on genericity and parallelization (using OpenMP/MPI).
  • DASHMM DASHMM is a C++ Software library developed at Indiana University using Asynchronous Multi-Tasking HPX-5 runtime system. It provides a unified execution on shared and distributed memory computers and provides 3D Laplace, Yukawa, and Helmholtz kernels.
  • RECFMM Adaptive FMM with dynamic parallelism on multicores.

Read other articles:

Sampul Ghost Reveries adalah album kedelapan band progressive death metal Opeth, yang pertama di bawah label rekaman Roadrunner Records. Album ini juga yang pertama bersama Per Wiberg sebagai anggota tetap, walaupun Wiberg telah bermain keyboard untuk konser sejak album Deliverance. Ghost Reveries direkam di Fascination Street Studios, Örebro, Swedia. Sampulnya dirancang oleh Travis Smith, diterbitkan di Eropa pada 29 Agustus 2005 dan di Amerika Utara pada 30 Agustus 2005, mencapai peringkat...

 

Angie Everhart. Daftar berikut menuliskan sejumlah tokoh ternama yang memiliki rambut merah. Rambut merah dapat berasal sebagai ragam corak dari pirang stroberi hingga pirang.[1] Dengan hanya 2% populasi yang memiliki warna merah rambut,[2] warna ini menjadi warna rambut alami yang paling langka.[1] Daftar isi A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Adwoa Aboah Adele Alexander II dari Scotland Danny Alexander Sasha Alexander Canelo Alvarez Lauren Ambrose ...

 

Untuk roman sejarah yang ceritanya diangkat dari zaman ini, lihat Kisah Tiga Negara. Untuk Tiga Kerajaan di Korea, lihat Tiga Kerajaan Korea. Bagian dari seri artikel mengenaiSejarah Tiongkok ZAMAN KUNO Neolitikum ±8500 – ±2070 SM Tiga Maharaja dan Lima Kaisar±6000 – ±4000 SM Dinasti Xia ±2070 – ±1600 SM Dinasti Shang ±1600 – ±1046 SM Dinasti Zhou ±1046 – 256 SM  Zhou Barat ±1046 – 771 SM  Zhou Timur 770 - 256 SM    Zaman Musim Semi dan Gugur 770...

American educational children's TV program This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 3-2-1 Contact – news · newspapers · books · scholar · JSTOR (May 2021) (Learn how and when to remove this template message) 3-2-1 ContactOriginal opening title of 3-2-1 ContactCreated bySamuel Y. Gibbon Jr.StarringVari...

 

كاتو أكيا   تقسيم إداري البلد اليونان  [1] خصائص جغرافية إحداثيات 38°08′30″N 21°33′06″E / 38.1418°N 21.5518°E / 38.1418; 21.5518   الارتفاع 20 متر  السكان التعداد السكاني 7689 (resident population of Greece) (2021)5734 (resident population of Greece) (2001)5426 (resident population of Greece) (1991)6618 (resident population of Greece) (2011)  �...

 

Historic church in New York, United States United States historic placeUnited Congregational Church of IrondequoitU.S. National Register of Historic Places United Congregational Church of IrondequoitShow map of New YorkShow map of the United StatesLocation644 Titus Ave., Rochester, New YorkCoordinates43°12′39″N 77°35′59″W / 43.21083°N 77.59972°W / 43.21083; -77.59972Area1.7 acres (0.69 ha)Built1910ArchitectFoote, Orlando K.,; Carpenter, CharlesArchitec...

Publicité de 1876 pour un hectographe, procédé de duplication utilisant une pâte gélatineuse et une encre aniline. La duplication ou la copie (mécanique) de documents papier désigne un ensemble de procédés techniques permettant la copie de textes et d'images à des échelles variables. Les formes les plus anciennes incluent la lithographie, les duplicateurs à alcool, etc. Contexte social Avec la deuxième révolution industrielle, entamée à la fin du XIXe siècle, de nouvelle...

 

2000 Indian filmKakkai SiraginilaeTitle cardDirected byP. VasuWritten byP. VasuProduced byG. V. AnandhanStarringParthibanPreetha VijayakumarCinematographyR. Raghunatha ReddyEdited byP. MohanrajMusic byIlaiyaraajaProductioncompanyAnand Movie LandRelease date10 March 2000Running time143 minutesCountryIndiaLanguageTamil Kakkai Siraginilae (transl. Wings of the crow) is a 2000 Indian Tamil-language drama film written and directed by P. Vasu. Parthiban and Preetha Vijayakumar star, whilst M...

 

GonnetotcomuneGonnetot – Veduta LocalizzazioneStato Francia Regione Normandia Dipartimento Senna Marittima ArrondissementDieppe CantoneLuneray TerritorioCoordinate49°46′N 0°54′E / 49.766667°N 0.9°E49.766667; 0.9 (Gonnetot)Coordinate: 49°46′N 0°54′E / 49.766667°N 0.9°E49.766667; 0.9 (Gonnetot) Superficie2,32 km² Abitanti155[1] (2009) Densità66,81 ab./km² Altre informazioniCod. postale76730 Fuso orarioUTC+1 Codi...

TurkeyNickname(s)Ay Yıldızlılar (The Crescent-Stars)AssociationTurkish Football FederationConfederationUEFA (Europe)Head coachEmrah Aykurt[1]Most capsErkan Anzaflıoğlu (57)Top scorerBarış Terzioğlu (48)FIFA codeTUR First colours Second colours First international Spain 2–1 Turkey  (Rio-de-Janeiro, Brazil; 12 February 2001)Biggest win Turkey 14–0 Malta  (Pescara, Italy; 4 September 2015)Biggest defeat Belarus 10–2 Turkey  (Baku, Azerbaijan; ...

 

Rights provided to Indian citizens The Preamble of the Constitution of India – India declaring itself as a country. The Fundamental Rights, Directive Principles of State Policy and Fundamental Duties' are sections of the Constitution of India that prescribe the fundamental obligations of the states to its citizens and the duties and the rights of the citizens to the State.[note 1] These sections are considered vital elements of the constitution, which was developed between 1949...

 

周處除三害The Pig, The Snake and The Pigeon正式版海報基本资料导演黃精甫监制李烈黃江豐動作指導洪昰顥编剧黃精甫主演阮經天袁富華陳以文王淨李李仁謝瓊煖配乐盧律銘林孝親林思妤保卜摄影王金城剪辑黃精甫林雍益制片商一種態度電影股份有限公司片长134分鐘产地 臺灣语言國語粵語台語上映及发行上映日期 2023年10月6日 (2023-10-06)(台灣) 2023年11月2日 (2023-11-02)(香�...

University of RostockUniversität RostockLogo Universitas Rostockbahasa Latin: Universitas RostochiensisMotoTraditio et InnovatioMoto dalam bahasa InggrisTradition and InnovationJenispublikDidirikan13 Februari 1419KanselirJoachim WitternRektorProfessor Wolfgang D. Schareck[1] (906th rector) Staf administrasi6,335 (2008, including University Hospital)Jumlah mahasiswa15,312 (2012)LokasiRostock, JermanKampusUrbanAfiliasiEUASitus webuni-rostock.deUniversity of Rostock Main Buildi...

 

Gustave Henry MayAlderman on the Edmonton City CouncilIn officeFebruary 16, 1912 – December 14, 1914 Personal detailsBorn(1881-06-02)June 2, 1881New York City, New YorkDiedMay 31, 1943(1943-05-31) (aged 61)Paramus, New JerseySpouseFlorence Mabel Byron (d. before 1959)RelationsPercy Claude Byron (brother in-law)Joseph Byron (father in-law)ChildrenGilbert B. (1906–2001)Joseph Henry (1908–1983)Gustave E. (1909–?)George A. (1914–1990)ProfessionPhoto engraver Gustave Henry ...

 

British cryptographer For the Australian rules footballer, see Clifford Cocks (footballer). Clifford CocksCB FRSClifford Cocks at the Royal Society admissions day in London, July 2015BornClifford Christopher Cocks (1950-12-28) 28 December 1950 (age 73)[1]Prestbury, Cheshire, England, United KingdomNationalityBritishEducationManchester Grammar SchoolAlma materUniversity of Cambridge (BA)Known for RSA encryption Public-key cryptography Cocks IBE scheme Scientific care...

Second Jewish–Roman War (115–117) You can help expand this article with text translated from the corresponding article in Hebrew. Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not translate text that appears...

 

Rules of DatingPoster teatrikalSutradaraHan Jae-rimProduserCha Seung-jaeDitulis olehKo Yun-heeHan Jae-rimPemeranPark Hae-ilKang Hye-jeongLee Dae-yeonPark GrinaSeo Yeong-hwaPenata musikLee Byung-wooSinematograferPark Yong-suPenyuntingPark Gok-jiDistributorCJ EntertainmentTanggal rilis10 Juni 2005Durasi118 menitNegaraKorea SelatanBahasaKorea Rules of Dating (Hangul: 연애의 목적; RR: Yeonae-ui mokjeok) adalah film Korea Selatan tahun 2005 yang dibintangi oleh Par...

 

Wenlock BarracksKingston upon Hull Wenlock BarracksWenlock BarracksLocation within East Riding of YorkshireCoordinates53°44′39″N 0°22′32″W / 53.74403°N 0.37546°W / 53.74403; -0.37546TypeDrill hallSite historyBuilt1911Built forWar OfficeIn use1911-Present Wenlock Barracks is a military installation on Anlaby Road in Kingston upon Hull, England. History The building was designed as the headquarters of the 2nd Northumbrian Brigade, Royal Field Artil...

قضاء الحسينية (الأردن)  - قضاء -  تقسيم إداري البلد الأردن  المحافظة محافظة معان لواء لواء الحسينية السكان التعداد السكاني 17323 نسمة (إحصاء 2015)   • الذكور 9035   • الإناث 8288   • عدد الأسر 3229 تعديل مصدري - تعديل   قضاء الحسينية قضاء يقع في لواء الحسينية، محاف�...

 

Andreï Sokolov, 2008 Verband Sowjetunion Sowjetunion (bis 1991)Russland Russland (1992 bis 2000)Frankreich Frankreich (seit 2000) Geboren 20. März 1963Workuta Titel Internationaler Meister (1982)Großmeister (1984) Aktuelle Elo‑Zahl 2446 (August 2024) Beste Elo‑Zahl 2645 (Januar 1987) Karteikarte bei der FIDE (englisch) Andreï Sokolov (ursprünglich russisch Андрей Юрьевич Соколов/ Andrei Jurjewitsch Sokolow, wiss. Transliteration Andrej ...