Elliptic operator

A solution to Laplace's equation defined on an annulus. The Laplace operator is the most famous example of an elliptic operator.

In the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator. They are defined by the condition that the coefficients of the highest-order derivatives be positive, which implies the key property that the principal symbol is invertible, or equivalently that there are no real characteristic directions.

Elliptic operators are typical of potential theory, and they appear frequently in electrostatics and continuum mechanics. Elliptic regularity implies that their solutions tend to be smooth functions (if the coefficients in the operator are smooth). Steady-state solutions to hyperbolic and parabolic equations generally solve elliptic equations.

Definitions

Let be a linear differential operator of order m on a domain in Rn given by where denotes a multi-index, and denotes the partial derivative of order in .

Then is called elliptic if for every x in and every non-zero in Rn, where .

In many applications, this condition is not strong enough, and instead a uniform ellipticity condition may be imposed for operators of order m = 2k: where C is a positive constant. Note that ellipticity only depends on the highest-order terms.[1]

A nonlinear operator is elliptic if its linearization is; i.e. the first-order Taylor expansion with respect to u and its derivatives about any point is an elliptic operator.

Example 1
The negative of the Laplacian in Rd given by is a uniformly elliptic operator. The Laplace operator occurs frequently in electrostatics. If ρ is the charge density within some region Ω, the potential Φ must satisfy the equation
Example 2
Given a matrix-valued function A(x) which is symmetric and positive definite for every x, having components aij, the operator is elliptic. This is the most general form of a second-order divergence form linear elliptic differential operator. The Laplace operator is obtained by taking A = I. These operators also occur in electrostatics in polarized media.
Example 3
For p a non-negative number, the p-Laplacian is a nonlinear elliptic operator defined by A similar nonlinear operator occurs in glacier mechanics. The Cauchy stress tensor of ice, according to Glen's flow law, is given by for some constant B. The velocity of an ice sheet in steady state will then solve the nonlinear elliptic system where ρ is the ice density, g is the gravitational acceleration vector, p is the pressure and Q is a forcing term.

Elliptic regularity theorems

Let L be an elliptic operator of order 2k with coefficients having 2k continuous derivatives. The Dirichlet problem for L is to find a function u, given a function f and some appropriate boundary values, such that Lu = f and such that u has the appropriate boundary values and normal derivatives. The existence theory for elliptic operators, using Gårding's inequality ,Lax–Milgram lemma and Fredholm alternative, states the sufficient condition for a weak solution u to exist in the Sobolev space Hk.

For example, for a Second-order Elliptic operator as in Example 2,

  • There is a number γ>0 such that for each μ>γ, each , there exists a unique solution of the boundary value problem
    , which is based on Lax-Milgram lemma.
  • Either (a) for any , (1) has a unique solution, or (b) has a solution , which is based on the property of compact operators and Fredholm alternative.

This situation is ultimately unsatisfactory, as the weak solution u might not have enough derivatives for the expression Lu to be well-defined in the classical sense.

The elliptic regularity theorem guarantees that, provided f is square-integrable, u will in fact have 2k square-integrable weak derivatives. In particular, if f is infinitely-often differentiable, then so is u.

For L as in Example 2,

  • Interior regularity: If m is a natural number, (2) , is a weak solution to (1), then for any open set V in U with compact closure, (3), where C depends on U, V, L, m, per se , which also holds if m is infinity by Sobolev embedding theorem.
  • Boundary regularity: (2) together with the assumption that is indicates that (3) still holds after replacing V with U, i.e. , which also holds if m is infinity.

Any differential operator exhibiting this property is called a hypoelliptic operator; thus, every elliptic operator is hypoelliptic. The property also means that every fundamental solution of an elliptic operator is infinitely differentiable in any neighborhood not containing 0.

As an application, suppose a function satisfies the Cauchy–Riemann equations. Since the Cauchy-Riemann equations form an elliptic operator, it follows that is smooth.


General definition

Let be a (possibly nonlinear) differential operator between vector bundles of any rank. Take its principal symbol with respect to a one-form . (Basically, what we are doing is replacing the highest order covariant derivatives by vector fields .)

We say is weakly elliptic if is a linear isomorphism for every non-zero .

We say is (uniformly) strongly elliptic if for some constant ,

for all and all .

The definition of ellipticity in the previous part of the article is strong ellipticity. Here is an inner product. Notice that the are covector fields or one-forms, but the are elements of the vector bundle upon which acts.

The quintessential example of a (strongly) elliptic operator is the Laplacian (or its negative, depending upon convention). It is not hard to see that needs to be of even order for strong ellipticity to even be an option. Otherwise, just consider plugging in both and its negative. On the other hand, a weakly elliptic first-order operator, such as the Dirac operator can square to become a strongly elliptic operator, such as the Laplacian. The composition of weakly elliptic operators is weakly elliptic.

Weak ellipticity is nevertheless strong enough for the Fredholm alternative, Schauder estimates, and the Atiyah–Singer index theorem. On the other hand, we need strong ellipticity for the maximum principle, and to guarantee that the eigenvalues are discrete, and their only limit point is infinity.

See also

Notes

  1. ^ Note that this is sometimes called strict ellipticity, with uniform ellipticity being used to mean that an upper bound exists on the symbol of the operator as well. It is important to check the definitions the author is using, as conventions may differ. See, e.g., Evans, Chapter 6, for a use of the first definition, and Gilbarg and Trudinger, Chapter 3, for a use of the second.

References

  • Evans, L. C. (2010) [1998], Partial differential equations, Graduate Studies in Mathematics, vol. 19 (2nd ed.), Providence, RI: American Mathematical Society, ISBN 978-0-8218-4974-3, MR 2597943
    Review:
    Rauch, J. (2000). "Partial differential equations, by L. C. Evans" (PDF). Journal of the American Mathematical Society. 37 (3): 363–367. doi:10.1090/s0273-0979-00-00868-5.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Magway StadiumStadion MagwayInformasi stadionNama lengkapStadion MagwayLokasiLokasiMagway, BurmaData teknisKapasitas7,000PemakaiMagway FC Stadion Magway adalah sebuahstadion serba guna di Magway, Burma. Saat ini digunakan terutaama untuk pertandingan ...

ArbegnuocDescrizione generaleAttivo1936-1941 Nazione Impero d'Etiopia Tipoguerriglieri RuoloFanteria Battaglie/guerreGuerra d'EtiopiaCampagna dell'Africa Orientale Italiana ComandantiDegni di notaAbebe AregaiHailù ChebbedèMangascià GiamberièFicrè MariamBelai ZellechèHailè Mariam MammoNegasc BezabèTecle Uolde Hawariat fonti citate nel corpo del testo Voci su unità militari presenti su Wikipedia Gli Arbegnuoc (lett. patriota) erano i combattenti etiopici che, dopo la fine ufficiale...

هذه المقالة بحاجة لمراجعة خبير مختص في مجالها. يرجى من المختصين في مجالها مراجعتها وتطويرها. (يوليو 2016) تحتاج هذه المقالة إلى الاستشهاد بمصادر إضافية لتحسين وثوقيتها. فضلاً ساهم في تطوير هذه المقالة بإضافة استشهادات من مصادر موثوقة. من الممكن التشكيك بالمعلومات غير المنسو�...

Not to be confused with All I Want to Do (The Beach Boys song). 1970 song by the Beach BoysAll I Wanna DoSong by the Beach Boysfrom the album Sunflower ReleasedAugust 31, 1970 (1970-08-31)RecordedMarch 19, 1969StudioGold Star and Beach Boys Studio, Los AngelesGenrePsychedelic popdream pop[1][2]chillwave[3][4][5][6][7]proto-shoegaze[8]Length2:34LabelBrother/RepriseSongwriter(s) Brian Wilson Mike Love Producer(s)The ...

This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (April 2022) SongDescriptive Fantasie on the Battles of Chattanooga, Lookout Mountain and Missionary RidgeSongLanguageEnglishPublished1889Composer(s)Alberto Riveri Descriptive Fantasie on the Battles of Chattanooga, Lookout Mountain and Missionary Ridge is a piano score arranged by Alberto Riveri. The score was published in 1889 by P.R....

Foro Ah Kim PechUbicaciónLocalidad Campeche, Campeche, México.CaracterísticasVías adyacentes Malecón de la Ciudad[editar datos en Wikidata] El Foro Ah Kim Pech,[1]​ es una plaza de eventos localizada en la ciudad de San Francisco de Campeche, capital del estado mexicano Campeche en México.[2]​ Se encuentra a un costado del malecón de la ciudad y frente al Centro de Convenciones Campeche XXI. Es utilizado para ferias, los eventos del Carnaval de Campeche y par...

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. يمتد تاريخ الاستيطان البشري في منطقة الأنديز في أمريكا الجنوبية من نحو 15000 قبل الميلاد إلى يومنا هذا. تتضمن المنطقة الممتدة على 7000 كيلومتر طولًا (4300 ميل) بيئات جبلية واستوائية...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 2021 Pac-12 Conference football season – news · newspapers · books · scholar · JSTOR (March 2021) (Learn how and when to remove this template message) Sports season2021 Pac-12 Conference football seasonLeagueNCAA Division I Football Bowl SubdivisionSportFootbal...

Мінаре́т (тур. Minare від араб. منارة‎, манара, «маяк») — в ісламській архітектурі баштоподібна культова споруда при мечеті, з якої глашатай (муедзин) скликає мусульман на молитву (салят). Зовнішні стіни мінарета нерідко мають художньо-мистецьке оздоблення у вигляді фігу

County in Oklahoma, United States County in OklahomaWashita CountyCountyThe Washita County Courthouse in 2015.Location within the U.S. state of OklahomaOklahoma's location within the U.S.Coordinates: 35°17′N 98°59′W / 35.29°N 98.99°W / 35.29; -98.99Country United StatesState OklahomaFounded1891Named forWashita RiverSeatNew CordellLargest cityNew CordellArea • Total1,009 sq mi (2,610 km2) • Land1,003 sq ...

American actress (born 1969) Kristy SwansonSwanson at GalaxyCon Raleigh in 2019BornKristen Noel Swanson (1969-12-19) December 19, 1969 (age 53)[1][2]Mission Viejo, California, U.S.OccupationActressYears active1984–presentSpouse Lloyd Eisler ​(m. 2009)​Children1 Kristen Noel Swanson (born December 19, 1969) is an American actress. She is best recognized for having played Buffy Summers in the 1992 film Buffy the Vampire Slayer and appeare...

American politician This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: William Barnum – news · newspapers · books · scholar · JSTOR (March 2013) (Learn how and when to remove this template message) William BarnumChair of the Democratic National CommitteeIn officeMarch 4, 1877 – April 30, 1889Preceded...

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Maio de 2021) Suicidal Angels Suicidal Angels no Rostock na Alemanha em 2012. Informação geral Origem Atenas País Grécia Gênero(s) Thrash metal, death metal Período em atividade 2001 - atualmente Gravadora(s) OMS RecordsNuclear Blast...

European nationalist militant groups You can help expand this article with text translated from the corresponding article in German. (April 2012) Click [show] for important translation instructions. View a machine-translated version of the German article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-tran...

يو بي-46 الجنسية  الإمبراطورية الألمانية الشركة الصانعة إيه جي فيزر  المالك البحرية الإمبراطورية الألمانية المشغل البحرية الإمبراطورية الألمانية  المشغلون الحاليون وسيط property غير متوفر. المشغلون السابقون وسيط property غير متوفر. التكلفة وسيط property غير متوفر. منظومة الت�...

Line-of-business security software by Microsoft Corporation This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Microsoft Forefront – news · newspapers · books · scholar · JSTOR (September 2011) (Learn how and when to remove this template message) Microsoft Forefront logo Microsoft Forefront is a discontinued family of line-of-business security software by ...

ビリー・ジョエル USAニューヨーク公演(2016年4月)基本情報出生名 ウィリアム・マーティン・ジョエル生誕 (1949-05-09) 1949年5月9日(74歳)出身地 アメリカ合衆国 ニューヨーク州ニューヨーク市サウス・ブロンクスジャンル ポップ・ロック[1]ソフトロック[1][2]職業 ミュージシャンシンガーソングライターピアニスト作曲家担当楽器 ボーカルピアノ活動�...

Final da Copa Libertadores da América de Futebol Feminino de 2009 Evento Copa Libertadores da América de Futebol Feminino de 2009 Santos Universidad Autónoma CBF APF 9 0 Data 18 de outubro de 2009 Local Estádio Urbano Caldeira, Santos, Brasil Árbitro ARG Salomé Di Iorio Público 14 183 ← Anterior Próxima → 2010 A final da Copa Libertadores da América de Futebol Feminino de 2009 foi a primeira final da Libertadores Feminina, torneio continental organizado anualmente pela Confedera�...

2011 television film directed by Patricia Riggen Lemonade MouthExtended edition US DVD coverGenre Drama Musical Based onLemonade Mouthby Mark Peter HughesTeleplay byApril BlairDirected byPatricia RiggenStarring Bridgit Mendler Adam Hicks Hayley Kiyoko Naomi Scott Blake Michael Music byChristopher LennertzCountry of originUnited StatesOriginal languageEnglishProductionExecutive producerDebra Martin ChaseProducerMatias AlvarezCinematographyChecco VareseEditorGirish BhargavaRunning time106 minut...

BurhanuddinKapolres Kebumen Informasi pribadiLahir1 Juli 1980 (umur 43)JambiSuami/istriDyah EkaAlma materAkademi Kepolisian (2002)Karier militerPihak IndonesiaDinas/cabang Kepolisian Daerah Jawa TengahMasa dinas2002—sekarangPangkat Ajun Komisaris Besar PolisiSatuanReserseSunting kotak info • L • B AKBP. Burhanuddin, S.H., S.I.K., M.H. (lahir 1 Juli 1980) adalah seorang perwira menengah Polri yang sejak 13 April 2022 mengemban amanat sebagai Kapolres Kebumen. Bur...