Electoral district of Terrigal
|
Read other articles:
Alejandro AgrestiAlejandro Agresti in 2004.Lahir2 Juni 1961 (umur 62)Buenos Aires, ArgentinaPekerjaanFilm directorProducerScreenwriter Alejandro Agresti (lahir 2 Juni 1961)[1] adalah sutradara film, penulis, dan produser berkebangsaan Argentina. Namanya dikenal melalui karyanya, The Lake House yang dimainkan oleh aktor Sandra Bullock dan Keanu Reeves tahun 2006. Latar belakang Alejandro Agresti lahir tahun 1961 di Buenos Aires, mengawali debut penyutradaraannya ketika masih rema...
Adelbert von ChamissoLahirLouis Charles Adélaïde de Chamissot(1781-01-30)30 Januari 1781Ante, Champagne, Kerajaan PrancisMeninggal21 Agustus 1838(1838-08-21) (umur 57)Berlin, Provinsi Brandenburg, Kerajaan PrusiaPekerjaanPenulisKebangsaanJermanGenrePuisi, novella Adelbert von Chamisso (pelafalan dalam bahasa Jerman: [ˈaːdl̩bɛʁt fɔn ʃaˈmɪso]; 30 Januari 1781 – 21 Agustus 1838) adalah seorang penyair dan botanis Jerman, penulis dari Peter Schlemihl, sebua...
Questa voce o sezione sugli argomenti parlamenti e Germania non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Il Reichstag (/ˈʀaɪ̯xsˌta:k/) o Dieta imperiale fu il massimo organo legislativo del Sacro Romano Impero. La sua evoluzione nei secoli portò questa sorta di parlamento di príncipi ad essere c...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) كأس التشيك 2001–02 تفاصيل الموسم كأس التشيك البلد جمهورية التشيك المنظم اتحاد جمهورية التشيك لكرة ا�...
CephalochordataRentang fosil: Middle Cambrian–Recent PreЄ Є O S D C P T J K Pg N Branchiostoma lanceolatum Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Subfilum: CephalochordataHaeckel, 1866[1] Grup †Pikaiidae Walcott 1911 Leptocardii Müller, 1845 †Cathaymyrus Shu, Conway Morris & Zhang 1996 †Paleobranchiostoma Oelofsen & Loock 1981 Branchiostomiformes Asymmetronidae Branchiostomidae Bonaparte 1841 Sinonim Pharyngobranchii (atau Cirrhostomi) Owen, 1846 Amp...
Mexican politician This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citatio...
Culinary traditions of the Bhojpur region of India This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Bhojpuri cuisine – news · newspapers · books · scholar ·...
S.TP., M.I.L.Elsa RosyidahElsa Rosyidah Informasi pribadiLahirElsa RosyidahSuami/istriAgung Purnomo[1]PekerjaanWirausaha, DosenSitus webhttp://tokopupuk.nethttp://tespotensiakademik.org errorSunting kotak info • L • B Elsa Rosyidah (lahir 25 Juni 1985) adalah wanita pelaku kewirausahaan bisnis, peneliti,[2][3][4][5][6][7][8][9] penulis,[10] dan dosen [11][12] kelahiran Indonesia. Pend...
Neighbourhood in North 24 Parganas, West Bengal, IndiaJagatdal JagaddalNeighbourhoodJagatdal GhatJagatdalLocation in West Bengal, IndiaShow map of West BengalJagatdalJagatdal (India)Show map of IndiaCoordinates: 22°51′45″N 88°23′10″E / 22.8625°N 88.3861°E / 22.8625; 88.3861Country IndiaStateWest BengalDistrictNorth 24 ParganasRegionGreater KolkataGovernment • TypeMunicipality • BodyBhatpara MunicipalityElevation15 m (49...
Political organization Not to be confused with the India League, an Indian Freedom Fighting organisation based in the UK. The Indian Independence League (also known as IIL) was a political organisation operated from the 1920s to the 1940s to organise those living outside British India into seeking the removal of British colonial rule over the region. Founded by Indian nationalists, its activities were conducted in various parts of Southeast Asia. It included Indian expatriates, and later, Ind...
Concept in economics An example of an indifference map with three indifference curves represented In economics, an indifference curve connects points on a graph representing different quantities of two goods, points between which a consumer is indifferent. That is, any combinations of two products indicated by the curve will provide the consumer with equal levels of utility, and the consumer has no preference for one combination or bundle of goods over a different combination on the same curv...
أستراليا المفتوحة 2003 - فردي السيدات جزء من أستراليا المفتوحة 2003 البلد أستراليا التاريخ 2003 الرياضة كرة المضرب حامل(ة) اللقب جينيفر كابرياتي البطل(ة) سيرينا ويليامز الوصيف(ة) فينوس ويليامز النتيجة 7–6(7–4)، 3–6، 6–4 أستراليا المفتوحة 2002 - فردي السيدات أستراليا �...
Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...
Church in Lolland, DenmarkStokkemarke ChurchStokkemarke KirkeLocationStokkemarke, LollandCountryDenmarkDenominationChurch of DenmarkArchitectureStyleRomanesque architecture, Gothic architectureAdministrationDioceseDiocese of Lolland–FalsterParishStokkemarke Sogn Stokkemarke Church is located in the village of Stokkemarke some 11 km (6.8 mi) northwest of Maribo on the Danish island of Lolland. Dating from the middle of the 13th century it was built in the Romanesque style with late...
本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...
Scientific radar array at Awarua The Unwin Radar array at Awarua The Unwin Radar is a scientific radar array at Awarua, near Invercargill, New Zealand 46°31′S 168°23′E / 46.51°S 168.38°E / -46.51; 168.38. Unwin is part of the Super Dual Auroral Radar Network (SuperDARN), an international radar network for studying the upper atmosphere and ionosphere that operates in the High Frequency (HF) bands between 8 and 22 MHz. The radar and associated research provides g...
Bravos de León Nombre completo Club de Béisbol Bravos de LeónNombres anteriores Cachorros de León (1979-1980)Otros nombres BravosMascota BravoLeónFundación 1978Liga Mexicana de BéisbolDivisión Zona SurEstadio Domingo Santana León, MéxicoInauguración 2 de septiembre de 1973 (50 años)Capacidad 6,500Presidente Mauricio Martínez[2]Mánager Orlando Merced[3]Títulos de Liga 1:1990Títulos divisionales 1 Zona Sur:1990TemporadasLMB 2023 8º Zona Sur Local ...
American dancer and choreographer (born 1943) Judith JamisonImage of Judith Jamison at Elon University where she speaks to Nancy Midgette's leadership class in the International Pavilion.Born (1943-05-10) May 10, 1943 (age 81)Philadelphia, PennsylvaniaNationalityAmericanEducationFisk UniversityUniversity of the ArtsOccupation(s)Dancer 1964–1988Artistic director 1989–2011Years active1964–2011Height5 ft 10 in (1.78 m)[1]CareerCurrent groupAlvin Ailey ...
The 2001 World Marathon Cup was the ninth edition of the World Marathon Cup of athletics and were held in Edmonton, Canada, inside of the 2001 World Championships.[1] Results Team men # Nations Time 1 Ethiopia 6:43:32 2 Japan 6:48:36 3 Italy 6:51:56 Team women # Nations Time 1 Japan 7:22:36 2 Russia 7:26:00 3 Romania 7:29:44 Individual men # Athlete Time Gezahegne Abera (ETH) 2:12:42 WL Simon Biwott (KEN) 2:12:43 St...
Set of real numbers that is not Lebesgue measurable In mathematics, a Vitali set is an elementary example of a set of real numbers that is not Lebesgue measurable, found by Giuseppe Vitali in 1905.[1] The Vitali theorem is the existence theorem that there are such sets. Each Vitali set is uncountable, and there are uncountably many Vitali sets. The proof of their existence depends on the axiom of choice. Measurable sets Certain sets have a definite 'length' or 'mass'. For instance, th...