Consider the following pullback of a continuous map p:
A frequent question is how the homology of the fiber product, , relates to the homology of B, X and E. For example, if B is a point, then the pullback is just the usual product . In this case the Künneth formula says
However this relation is not true in more general situations. The Eilenberg−Moore spectral sequence is a device which allows the computation of the (co)homology of the fiber product in certain situations.
Statement
The Eilenberg−Moore spectral sequences generalizes the above isomorphism to the situation where p is a fibration of topological spaces and the base B is simply connected. Then there is a convergent spectral sequence with
This is a generalization insofar as the zeroeth Tor functor is just the tensor product and in the above special case the cohomology of the point B is just the coefficient field k (in degree 0).
Dually, we have the following homology spectral sequence:
Indications on the proof
The spectral sequence arises from the study of differential graded objects (chain complexes), not spaces. The following discusses the original homological construction of Eilenberg and Moore. The cohomology case is obtained in a similar manner.
In down-to-earth terms, the map assigns to a singular chain s: Δn → B the composition of s and the diagonal inclusion B ⊂ B × B. Similarly, the maps and induce maps of differential graded coalgebras
, .
In the language of comodules, they endow and with differential graded comodule structures over , with structure maps
and similarly for E instead of X. It is now possible to construct the so-called cobar resolution for
as a differential graded comodule. The cobar resolution is a standard technique in differential homological algebra:
where the n-th term is given by
The maps are given by
where is the structure map for as a left comodule.
The cobar resolution is a bicomplex, one degree coming from the grading of the chain complexes S∗(−), the other one is the simplicial degree n. The total complex of the bicomplex is denoted .
The link of the above algebraic construction with the topological situation is as follows. Under the above assumptions, there is a map
that induces a quasi-isomorphism (i.e. inducing an isomorphism on homology groups)
For any bicomplex there are two filtrations (see John McCleary (2001) or the spectral sequence of a filtered complex); in this case the Eilenberg−Moore spectral sequence results from filtering by increasing homological degree (by columns in the standard picture of a spectral sequence). This filtration yields
These results have been refined in various ways. For example, William G. Dwyer (1975) refined the convergence results to include spaces for which
for all
and Brooke Shipley (1996) further generalized this to include arbitrary pullbacks.
The original construction does not lend itself to computations with other homology theories since there is no reason to expect that such a process would work for a homology theory not derived from chain complexes. However, it is possible to axiomatize the above procedure and give conditions under which the above spectral sequence holds for a general (co)homology theory, see Larry Smith's original work (Smith 1970) or the introduction in (Hatcher 2002).
McCleary, John (2001), "Chapters 7 and 8: The Eilenberg−Moore spectral sequence I and II", A user's guide to spectral sequences, Cambridge Studies in Advanced Mathematics, vol. 58, Cambridge University Press, ISBN978-0-521-56759-6
Smith, Larry (1970), Lectures on the Eilenberg−Moore spectral sequence, Lecture Notes in Mathematics, vol. 134, Berlin, New York: Springer-Verlag, MR0275435
Further reading
Allen Hatcher, Spectral Sequences in Algebraic Topology, Ch 3. Eilenberg–MacLane Spaces [1]