Doubly periodic function

In mathematics, a doubly periodic function is a function defined on the complex plane and having two "periods", which are complex numbers u and v that are linearly independent as vectors over the field of real numbers. That u and v are periods of a function ƒ means that

for all values of the complex number z.[1][2]

The doubly periodic function is thus a two-dimensional extension of the simpler singly periodic function, which repeats itself in a single dimension. Familiar examples of functions with a single period on the real number line include the trigonometric functions like cosine and sine, In the complex plane the exponential function ez is a singly periodic function, with period 2πi.

Examples

As an arbitrary mapping from pairs of reals (or complex numbers) to reals, a doubly periodic function can be constructed with little effort. For example, assume that the periods are 1 and i, so that the repeating lattice is the set of unit squares with vertices at the Gaussian integers. Values in the prototype square (i.e. x + iy where 0 ≤ x < 1 and 0 ≤ y < 1) can be assigned rather arbitrarily and then 'copied' to adjacent squares. This function will then be necessarily doubly periodic.

If the vectors 1 and i in this example are replaced by linearly independent vectors u and v, the prototype square becomes a prototype parallelogram that still tiles the plane. The "origin" of the lattice of parallelograms does not have to be the point 0: the lattice can start from any point. In other words, we can think of the plane and its associated functional values as remaining fixed, and mentally translate the lattice to gain insight into the function's characteristics.

Use of complex analysis

If a doubly periodic function is also a complex function that satisfies the Cauchy–Riemann equations and provides an analytic function away from some set of isolated poles – in other words, a meromorphic function – then a lot of information about such a function can be obtained by applying some basic theorems from complex analysis.

  • A non-constant meromorphic doubly periodic function cannot be bounded on the prototype parallelogram. For if it were it would be bounded everywhere, and therefore constant by Liouville's theorem.
  • Since the function is meromorphic, it has no essential singularities and its poles are isolated. Therefore a translated lattice that does not pass through any pole can be constructed. The contour integral around any parallelogram in the lattice must vanish, because the values assumed by the doubly periodic function along the two pairs of parallel sides are identical, and the two pairs of sides are traversed in opposite directions as we move around the contour. Therefore, by the residue theorem, the function cannot have a single simple pole inside each parallelogram – it must have at least two simple poles within each parallelogram (Jacobian case), or it must have at least one pole of order greater than one (Weierstrassian case).
  • A similar argument can be applied to the function g = 1/ƒ where ƒ is meromorphic and doubly periodic. Under this inversion the zeroes of ƒ become the poles of g, and vice versa. So the meromorphic doubly periodic function ƒ cannot have one simple zero lying within each parallelogram on the lattice—it must have at least two simple zeroes, or it must have at least one zero of multiplicity greater than one. It follows that ƒ cannot attain any value just once, since ƒ minus that value would itself be a meromorphic doubly periodic function with just one zero.

See also

Literature

  • Jacobi, C. G. J. (1835). "De functionibus duarum variabilium quadrupliciter periodicis, quibus theoria transcendentium Abelianarum innititur". Journal für die reine und angewandte Mathematik (in Latin). 13. A. L. Crelle. Reimer, Berlin: 55–56. Retrieved 3 October 2022. Reprinted in Gesammelte Werke, Vol. 2, 2nd ed. Providence, Rhode Island: American Mathematical Society, pp. 25-26, 1969.
  • Whittaker, E. T. and Watson, G. N.: A Course in Modern Analysis, 4th ed. reprinted Cambridge, England: Cambridge University Press, 1963, pp. 429-535. Chapters XX - XXII on elliptic functions, general theorems and Weierstrass elliptic functions, theta functions and Jacobian elliptic functions.

References

  1. ^ "Double-periodic function", Encyclopedia of Mathematics, EMS Press, 2001 [1994], adapted from an original article by E.D. Solomentsev.
  2. ^ Weisstein, Eric W. "Doubly Periodic Function". mathworld.wolfram.com. Wolfram Mathworld. Retrieved 3 October 2022.

Read other articles:

MăgureleLokasi kota MăgureleNegara RumaniaProvinsiProvinsi IlfovPopulasi (2002)[1]9.272Zona waktuUTC+2 (EET) • Musim panas (DST)UTC+3 (EEST) Măgurele adalah sebuah kota yang terletak di sebelah barat daya provinsi Ilfov, Rumania. Populasi penduduk kota ini sebesar 9.200 jiwa. Di kota ini terdapat dua fasilitas penelitian di bidang nuklir dan fisika, yaitu Institut Fisika Atom (bahasa inggris:Institute of Atomic Physics) (bahasa Rumania: Institutul de Fizicǎ A...

 

Bài này viết về thành phố và quận San Francisco tại California. Đối với các định nghĩa khác, xem San Francisco (định hướng). San Francisco, California—  Quận-thành phố thống nhất  —Thành phố và Quận San FranciscoCity and County of San Francisco San Francisco nhìn từ Marin Headlands Hiệu kỳẤn chươngTên hiệu: Xem Danh sách biệt danh của San Francisco[1]Khẩu hiệu: Oro ...

 

Find the 1st PrizeEpisode Drama StagePoster resmiNomor episodeMusim 5Episode 5SutradaraPark Hong-suPenulisChoi Si-eunProduserStudio DragonC-JeS EntertainmentTanggal siar17 Juni 2022 (2022-06-17)Kronologi episode ← SebelumnyaXX+XY Selanjutnya →Don't Announce Your Husband's Death Find the 1st Prize (Hangul: 1등 당첨금 찾아가세요; RR: 1Deung Dangcheomgeum) adalah episode kelima dari musim kelima dari seri antologi Korea Selatan Drama Stage, ...

Self-regulating valve to control hot water flow A thermostatic radiator valve on position 2 (15–17 °C) Installed thermostatic radiator valve with the adjustment wheel removed A thermostatic radiator valve (TRV) is a self-regulating valve fitted to hot water heating system radiator, to control the temperature of a room by changing the flow of hot water to the radiator. Functioning Cutaway model of a thermostatic radiator valve Conventional wax motor TRV The classic thermostatic radiator val...

 

Review of the election 2024 Mesa mayoral election ← 2020 November 5, 2024 2028 → Mayor before election John Giles Republican Elected Mayor TBD Elections in Arizona Federal government Presidential elections 1912 1916 1920 1924 1928 1932 1936 1940 1944 1948 1952 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012 2016 2020 2024 Presidential primaries Democratic 2004 2008 2016 2020 2024 Republican 2008 2012 2016 2024 U.S. Senate elections 1912 1914 19...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مارس 2018) مقاطعة كونفيرس     الإحداثيات 42°58′N 105°30′W / 42.97°N 105.5°W / 42.97; -105.5 ...

Building in Manhattan, New York Henry T. Sloane House Historical plaque The Henry T. Sloane House is a mansion located at 9 East 72nd Street on the Upper East Side of the borough of Manhattan, New York City. It was designed by Carrère and Hastings in the late Rococo style and built in 1894. History It was originally constructed for Henry T. Sloane, son of a founder of the carpet firm W. & J. Sloane.[1] The Pulitzer family rented it from Sloane, and in 1901 it was purchased by ban...

 

Cet article est une ébauche concernant une commune du Puy-de-Dôme. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Le bandeau {{ébauche}} peut être enlevé et l’article évalué comme étant au stade « Bon début » quand il comporte assez de renseignements encyclopédiques concernant la commune. Si vous avez un doute, l’atelier de lecture du projet Communes de France est à votre disposition pour vous aider. Consultez également la page d’aid...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Elton Divino CelioInformasi pribadiTanggal lahir 7 Juli 1987 (umur 36)Tempat lahir BrasilPosisi bermain BekKarier senior*Tahun Tim Tampil (Gol)2007 Yokohama F. Marinos * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Elton Di...

Lansekap Musim Semi, oleh pelukis dari sekolah seni Rinpa yang tak dikenal, abad ke-18. Rinpa (琳派code: ja is deprecated , Rinpa), adalah salah satu sekolah utama seni lukis di Jepang. Sekolah seni Rinpa yang bersejarah ini pertama kali diciptakan di Kyoto pada abad ke-17 oleh Hon'ami Kōetsu (1558-1637) dan Tawaraya Sōtatsu (sekitar tahun 1643). Kira-kira lima puluh tahun kemudian, gaya sekolah seni Rinpa dikonsolidasikan oleh dua bersaudara Ogata Kōrin (1658-1716) dan Ogata Kenzan (166...

 

23°25′55″N 120°24′53″E / 23.43194°N 120.41472°E / 23.43194; 120.41472 Rural townshipShuishang Township水上鄉 MizukamiRural townshipShuishang Township in Chiayi CountyLocationChiayi County, TaiwanArea • Total69.1198 km2 (26.6873 sq mi)Population (May 2022) • Total48,164 Shuishang Township (Chinese: 水上鄉; pinyin: Shuǐshàng Xiāng, meaning near water) is a rural township in Chiayi County, Taiwan. Hi...

 

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

Elf Aquitaine Tipe Société anonyme Industri Petroleum Perusahaan Sebelumnya Mineralöl- und Asphaltwerke  Penutupan 2000; 21 years ago (2000) Nasib Merged to TotalEnergies in 2000, becoming a brand Perusahaan Lanjutan TotalEnergies  Kantor Pusat Courbevoie, France Area Pelayanan Seluruh Dunia Produk Gasoline, motor oils, natural gas, brake fluids Induk Perusahaan TotalEnergies Situs Web elf.com Elf Aquitaine adalah Merek Oli mesin dan produk Motor lainnya (seperti minya...

 

Halaman ini berisi artikel tentang pengaturan konsumsi makanan. Untuk jumlah makanan yang dikonsumsi oleh seseorang atau organisme tertentu, lihat Diet (nutrisi). William Banting, orang yang memopulerkan diet penurunan berat badan pada abad ke-19 Diet (bahasa Inggris: dieting) adalah pengaturan dalam mengonsumsi makanan dengan tujuan untuk mengurangi, mempertahankan, atau menambah berat badan, atau untuk mencegah dan mengobati penyakit tertentu seperti diabetes. Diet untuk menurunkan berat ba...

 

2011 New York's 9th congressional district special election ← 2010 September 13, 2011 2012 → New York's 9th congressional district   Nominee Bob Turner David Weprin Party Republican Democratic Alliance Conservative Parties Working Families Independence Popular vote 37,342 33,656 Percentage 51.7% 46.6% County resultsTurner:      60–70%Weprin:      50–60% U.S. Representative before election Anthony Weiner Dem...

Former arena in Detroit Joe Louis ArenaThe Joe[1]Entrance of Joe Louis Arena in December 2015Address19 Steve Yzerman Drive[2]LocationDetroit, Michigan[2]Coordinates42°19′31″N 83°3′5″W / 42.32528°N 83.05139°W / 42.32528; -83.05139OwnerCity of Detroit[8]OperatorOlympia Entertainment[9]CapacityIce hockey:19,275 (1979–1989)19,875 (1989–1996)19,983 (1996–2000)19,995 (2000–2001)20,058 (2001–2003)20,066 (2003–201...

 

1938 New Zealand general election ← 1935 14 (Māori) & 15 October (general) 1938 1943 → elected members →All 80 seats in the New Zealand Parliament 41 seats were needed for a majority   First party Second party   Leader Michael Joseph Savage Adam Hamilton Party Labour National Leader since 12 October 1933 31 October 1936 Leader's seat Auckland West Wallace Last election 53 seats, 45.7% 19 seats, 32.9% (as United–Reform Coal...

 

Conferenza internazionale dei meridianiIl meridiano fondamentale attraverso Greenwich TemaDefinizione del meridiano fondamentale Partecipanti41 delegati (25 nazioni) Apertura1 ottobre 1884 Chiusura1 novembre 1884 Stato Stati Uniti LocalitàWashington La Conferenza internazionale dei meridiani si tenne a Washington nell'ottobre 1884 per decidere il meridiano fondamentale sia per il calcolo della latitudine sia per il calcolo dei fusi orari.[1] Indice 1 I partecipanti 2 Le conclusi...

Ne doit pas être confondu avec Impesanteur ou Gravitation. Le champ de pesanteur est le champ attractif qui s'exerce sur tout corps doté d'une masse sur la Terre (ou un autre astre). Il s'agit d'un champ d'accélération, souvent appelé plus simplement pesanteur ou « g »[1]. L'essentiel de la pesanteur terrestre est due à la gravité, mais s'en distingue du fait de l'accélération axifuge induite par la rotation de la Terre sur elle-même. La gravité terrestre découle de l...

 

Dieser Artikel beschreibt die Bundesstraße 41 in Deutschland. Zur gleichnamigen Straße in Österreich siehe Gmünder Straße. Vorlage:Infobox hochrangige Straße/Wartung/DE-B Bundesstraße 41 in Deutschland Karte Verlauf der B 41 Alle Koordinaten: OSM | WikiMap Basisdaten Betreiber: Deutschland Bundesrepublik Deutschland Straßenbeginn: Saarbrücken(49° 12′ 16″ N, 6° 57′ 23″ O49.2044976.956378) Straßenende: Bad Kreuznach(49° ...