Double pushout graph rewriting

In computer science, double pushout graph rewriting (or DPO graph rewriting) refers to a mathematical framework for graph rewriting. It was introduced as one of the first algebraic approaches to graph rewriting in the article "Graph-grammars: An algebraic approach" (1973).[1] It has since been generalized to allow rewriting structures which are not graphs, and to handle negative application conditions,[2] among other extensions.

Definition

A DPO graph transformation system (or graph grammar) consists of a finite graph, which is the starting state, and a finite or countable set of labeled spans in the category of finite graphs and graph homomorphisms, which serve as derivation rules. The rule spans are generally taken to be composed of monomorphisms, but the details can vary.[3]

Rewriting is performed in two steps: deletion and addition.

After a match from the left hand side to is fixed, nodes and edges that are not in the right hand side are deleted. The right hand side is then glued in.

Gluing graphs is in fact a pushout construction in the category of graphs, and the deletion is the same as finding a pushout complement, hence the name.

Uses

Double pushout graph rewriting allows the specification of graph transformations by specifying a pattern of fixed size and composition to be found and replaced, where part of the pattern can be preserved. The application of a rule is potentially non-deterministic: several distinct matches can be possible. These can be non-overlapping, or share only preserved items, thus showing a kind of concurrency known as parallel independence,[4] or they may be incompatible, in which case either the applications can sometimes be executed sequentially, or one can even preclude the other.

It can be used as a language for software design and programming (usually a variant working on richer structures than graphs is chosen). Termination for DPO graph rewriting is undecidable because the Post correspondence problem can be reduced to it.[5]

DPO graph rewriting can be viewed as a generalization of Petri nets.[4]

Generalization

Axioms have been sought to describe categories in which DPO rewriting will work. One possibility is the notion of an adhesive category, which also enjoys many closure properties. Related notions are HLR systems, quasi-adhesive categories and -adhesive categories, adhesive HLR categories.[6]

The concepts of adhesive category and HLR system are related (an adhesive category with coproducts is a HLR system[7]).

Hypergraph, typed graph and attributed graph rewriting,[8] for example, can be handled because they can be cast as adhesive HLR systems.

Notes

  1. ^ Hartmut Ehrig; Michael Pfender; Hans-Jürgen Schneider (Oct 1973). "Graph-Grammars: An Algebraic Approach". IEEE Conference Record of 14th Annual Symposium on Switching and Automata Theory (SWAT'08). IEEE. pp. 167–180. doi:10.1109/SWAT.1973.11.
  2. ^ Hartmut Ehrig; Karsten Ehrig; Annegret Habel; Karl-Heinz Pennemann (2004). "Constraints and Application Conditions: From Graphs to High-Level Structures". In Ehrig H.; Engels G.; Parisi-Presicce F.; Rozenberg G. (eds.). Graph Transformations. Lecture Notes in Computer Science. Vol. 3256. Springer. pp. 287–303. doi:10.1007/978-3-540-30203-2_21. ISBN 978-3-540-23207-0.
  3. ^ "Double-pushout graph transformation revisited", Habel, Annegret and Müller, Jürgen and Plump, Detlef, Mathematical Structures in Computer Science, vol. 11, no. 05., pp. 637--688, 2001, Cambridge University Press
  4. ^ a b "Concurrent computing: from Petri nets to graph grammars", Corradini, Andrea, ENTCS, vol. 2, pp. 56--70, 1995, Elsevier
  5. ^ , "Termination of graph rewriting is undecidable", Detlef Plump, Fundamenta Informaticae, vol. 33, no. 2, pp. 201--209, 1998, IOS Press
  6. ^ Hartmut Ehrig and Annegret Habel and Julia Padberg and Ulrike Prange, "Adhesive high-level replacement categories and systems", 2004, Springer
  7. ^ "Adhesive categories", Stephen Lack and Paweł Sobociński, in Foundations of software science and computation structures, pp. 273--288, Springer 2004
  8. ^ "Fundamentals of Algebraic Graph Transformation", Hartmut Ehrig, Karsten Ehrig, Ulrike Prange and Gabriele Taentzer

Read other articles:

French painter (1654–1733) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Louis de Boullogne – news · newspapers · books · scholar · JSTOR (September 2023) (Learn how and when to remove this template message) Louis de BoullognePortrait of Boullogne from 1701 by Académie member Pierre GobertBorn19 Novembe...

1969 studio album by the WhoTommyStudio album by the WhoReleased19 May 1969 (1969-05-19)Recorded19 September 1968 – 7 March 1969StudioIBC and Morgan, LondonGenreRockLength74:44Label Track (UK) Decca (US) ProducerKit LambertThe Who UK chronology Direct Hits(1968) Tommy(1969) Live at Leeds(1970) The Who US chronology Magic Bus: The Who On Tour(1968) Tommy(1969) Live at Leeds(1970) Singles from Tommy Pinball WizardReleased: 7 March 1969 I'm Free / We're Not ...

War memorial The Mametz Wood Memorial commemorates an engagement of the 38th (Welsh) Division of the British Army during the First Battle of the Somme in France in 1916. The memorial Mametz Wood and memorial. The memorial assembly blurred due to copyright restrictions The memorial, erected in 1987 by Welsh sculptor David Petersen, is a Welsh red dragon on top of a three-metre stone plinth, facing the wood and tearing at barbed wire. It was commissioned by the South Wales Branch of the Western...

  لمعانٍ أخرى، طالع قسطنطين (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) قسطنطين (كاتب) معلومات شخصية الميلاد سنة 1972 (العمر 50–51 سنة)  مواطنة الولايات المتحدة  الحياة العملية المهنة ك�...

Opera house in Brussels, Belgium La MonnaieDe MuntThéâtre Royal de la Monnaie (French)Koninklijke Muntschouwburg (Dutch)The Royal Theatre of La Monnaie on the Place de la Monnaie/Muntplein in BrusselsFormer namesThéâtre de la Monnoye (1700–1819)[1]AddressPlace de la Monnaie / MuntpleinB-1000 City of Brussels, Brussels-Capital RegionBelgiumCoordinates50°50′59″N 4°21′14″E / 50.84972°N 4.35389°E / 50.84972; 4.35389Public transitMetro: D...

Television series Kasautii Zindagii KayGenreDramaCreated byEkta KapoorScreenplay byAnil NagpalMrinal TripathiStory byAnil NagpalDirected byMuzammil DesaiCreative directorsRicha AmbolkarShivangi BabbarStarring Erica Fernandes Parth Samthaan Hina Khan Karan Singh Grover Aamna Sharif Karan Patel For full listSee Below Opening themeBabul Supriyo and Priya BhattacharyaCountry of originIndiaOriginal languageHindiNo. of seasons2No. of episodes468ProductionExecutive producersNilesh MishraRanjan JenaP...

Neighbourhood in Peel, Ontario, CanadaErindaleNeighbourhoodAerial view of Erindale, Mississauga in 2022ErindaleShow map of Regional Municipality of PeelErindaleShow map of Southern OntarioCoordinates: 43°32′40″N 79°39′5″W / 43.54444°N 79.65139°W / 43.54444; -79.65139CountryCanadaProvinceOntarioRegional municipalityPeelCityMississaugaEstablished1805Time zoneUTC-5 (EST) • Summer (DST)UTC-4 (EDT)Forward sortation areaL5CArea code(s)905 and 289NTS M...

Християнський союзChristenUnie Країна  Нідерланди[1]Голова партії Петер БлокейсДата заснування 15 березня 2001Штаб-квартира Puntenburgerlaan 91, АмерсфортІдеологія Християнська демократіяКількість членів  26 441Офіційний сайт christenunie.nl Християнський союз (нід. ChristenUnie, CU)&#...

Hon.M. CanagaratnamMember of Parliamentfor PottuvilIn office1977–1980Succeeded byRanganayaki Pathmanathan Personal detailsBorn(1924-04-15)15 April 1924Died20 April 1980(1980-04-20) (aged 56)Political partyUnited National PartyEthnicitySri Lankan Tamil Mylvaganam Canagaratnam (15 April 1924 – 20 April 1980) was a Sri Lankan Tamil politician and Member of Parliament.[1] Canagaratnam stood as the Tamil United Liberation Front's candidate for Pottuvil at the 1977 parliamentar...

Village in Marowijne District, SurinameMarijkedorp Wan Shi ShaVillageMarijkedorpLocation in SurinameCoordinates: 5°30′25″N 54°03′09″W / 5.507083°N 54.052556°W / 5.507083; -54.052556Country SurinameDistrictMarowijne DistrictResortAlbinaGovernment • CaptainGrace Watamaleo[1]Population (2020)[1] • Total310 Marijkedorp (Lokono: Wan Shi Sha) is a village of indigenous Lokono people[1] in the Albina resort of t...

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (نوفمبر 2019) مُخطط يوضح تفاعل البوليميراز المتسلسل العشي تفاعل البوليميراز المتسلسل العش�...

William Brent BellBell di set film The Boy pada 2015LahirLexington, Kentucky, ASPekerjaanSutradara, penulis naskah, produser filmTahun aktif1997–sekarang William Brent Bell adalah sutradara, penulis naskah, dan produser film Amerika. Ia dikenal karena pekerjaannya dalam film horor seperti Stay Alive (2006), The Devil Inside (2012), Wer (2013), The Boy (2016), Brahms: The Boy II (2020), Separation (2021), Orphan: First Kill (2022), dan Lord of Misrule (2023). Film-filmnya telah meraup k...

(Titik menunjukkan kota, dapat diklik)■ ― Kota terpilih■ ― Kota inti■ ― Kota khusus Kota Istimewa (特例市 (とくれいし) Tokureishi) Jepang adalah kota-kota yang mempunyai jumlah populasi penduduk sekitar 200,000 orang dan berfungsi untuk menjalankan peranan kepada pemerintah kota seperti yang telah ditetapkan oleh kota inti. Kategori ini telah dibentuk oleh Undang-undang Otonomi Daerah, Pasal 252 ayat 26. Di mana isinya telah ditetapkan oleh Badan Kabinet Jepang seperti y...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Pakistan Green Party – news · newspapers · books · scholar · JSTOR (November 2012) (Learn how and when to remove this template message) Political party in Pakistan Pakistan Green Party پاکستان گرین پارٹیChairmanLiaquat Ali ShaikhSecretary-Ge...

American college basketball season 2001–02 Pittsburgh Panthers men's basketballBig East Regular Season West ChampionsNCAA tournament, Sweet SixteenConferenceBig East ConferenceRankingCoachesNo. 9APNo. 9Record29–6 (13–3 Big East)Head coachBen Howland (3rd season)Assistant coaches Jamie Dixon (3rd season) Barry Rohrssen (1st season) Ernie Zeigler (1st season) Home arenaFitzgerald Field House(Capacity: 4,122)Seasons← 2000–012002–03 → 2001–02 ...

Indian motion picture company UTV Motion PicturesTypeSubsidiaryIndustryFilm production, film distributionFounded1996; 27 years ago (1996)FounderRonnie ScrewvalaZarina ScrewvalaDefunct2017; 6 years ago (2017)FateAbsorbed into Walt Disney Studios Motion PicturesHeadquartersMumbai, IndiaKey peopleMahesh Samat(Managing director)Amrita Pandey(Vice-president)ProductsMotion picturesServicesFilm production, marketing and distributionOwnerThe Walt Disney Company Ind...

塔尔西斯山群火星轨道器激光高度计测绘的塔尔西斯山群及周边区的地形图。奥林帕斯山位于左上;右侧是水手谷系统的西端及诺克提斯迷宫。位置塔尔西斯区经纬北纬1.57°,东经112.58°海拔艾斯克雷尔斯山(18.2公里)查论编 塔尔西斯山群 (Tharsis Montes) 是火星塔尔西斯区的三座大型盾状火山,从北往南分别为艾斯克雷尔斯山、帕弗尼斯山和阿尔西亚山。拉丁术语山(Mons,复...

Multimedios Televisión station in Nuevo Laredo, Tamaulipas XHNAT-TDTNuevo Laredo, Tamaulipas, MexicoChannelsDigital: 32 (UHF)Virtual: 6BrandingMultimediosProgrammingAffiliations6.1 Canal 6 6.2 Milenio TV 6.3 Teleritmo 6.4 MVS TVOwnershipOwnerGrupo Multimedios(Multimedios Televisión, S.A. de C.V.)HistoryFounded1994Former channel number(s)45 (analog, 1994-2015, digital to 2016)12 (digital, 2016-2018)Former affiliationsGalavisiónCall sign meaningNuevo LAredo TamaulipasTechnical informationLic...

Monty Python sketch John Cleese as a civil servant in the halls of the Ministry Typical silly walk gait with instructions. The Ministry of Silly Walks is a sketch from the Monty Python comedy troupe's television show Monty Python's Flying Circus, series 2, episode 1, which is entitled Face the Press. The episode first aired on 15 September 1970. A shortened version of the sketch was performed for Monty Python Live at the Hollywood Bowl. A satire on bureaucratic inefficiency, the sketch involv...

Untuk 2013 science fiction romance film, lihat Frequencies (film). FrequencySutradara Gregory Hoblit Produser Gregory Hoblit Hawk Koch Toby Emmerich Bill Carraro Ditulis oleh Toby Emmerich PemeranDennis QuaidJim CaviezelAndre BraugherElizabeth MitchellNoah EmmerichShawn DoylePenata musikMichael KamenSinematograferAlar KiviloPenyuntingDavid RosenbloomDistributorNew Line CinemaTanggal rilis 28 April 2000 (2000-04-28) Durasi118 menitNegara Amerika Serikat Bahasa Inggris Anggaran$31 ju...