Dorsal attention network
Large-scale brain network involved in voluntary orienting of attention
Interaction between dorsal and ventral attention networks enables dynamic control of attention in relation to top-down goals and bottom-up sensory stimulation.[ 1]
The dorsal attention network (DAN ), also known anatomically as the dorsal frontoparietal network (D-FPN ), is a large-scale brain network of the human brain that is primarily composed of the intraparietal sulcus (IPS) and frontal eye fields (FEF).[ 2] [ 3] It is named and most known for its role in voluntary orienting of visuospatial attention .[ 4] [ 5]
As the IPS and FEF were noticed to be activated during many attention-demanding tasks, this network was sometimes referred to as the task-positive network to contrast it against the task-negative network , or default mode network.[ 6] However, this dichotomy is now considered misleading, because the default mode network can be active in certain cognitive tasks.[ 7]
Anatomy
The core regions of the DAN are the IPS and FEF of each hemisphere.[ 8] Other regions of the network may include the middle temporal region (MT+),[ 6] superior parietal lobule (SPL), supplementary eye field (SEF),[ 9] and ventral premotor cortex .[ 10]
More recent works indicate that the cerebellum may participate in this network as well.[ 11] [ 12] Less studied regions include the right dorsolateral prefrontal cortex and superior colliculus .[ 10]
Function
The DAN is most prominently involved in goal-directed, voluntary control of visuospatial attention.[ 4] [ 5] Corbetta et al., who first defined and named the DAN in the early-to-mid 2000s,[ 5] [ 13] suggest that the network is involved in general top-down selection of stimuli and responses, including other modalities (e.g. auditory, tactile).[ 14] However, evidence that the full DAN is involved in auditory top-down attention has been questioned, as tests that make said claims incorporated both auditory and visual stimuli.[ 15]
The dorsal attention network dynamically interacts with the ventral attention network (or salience network ) according to task demands.[ 1] The inferior frontal junction configures this interaction between the two networks during task switches or attention shifts.[ 16]
Clinical significance
Reduced connectivity within the dorsal and ventral attention networks has been linked to higher levels of attention deficit hyperactivity disorder symptoms.[ 17] [ 18] Similarly, reduced connectivity between the DAN and the frontoparietal network is associated with major depressive disorder .[ 19] On the other hand, overactivation of the DAN has been observed in patients with schizophrenia .[ 20]
Nomenclature
There are several variations of this network's name in neuroscience literature, such as the dorsal attention system ,[ 1] dorsal frontoparietal attention network ,[ 9] and frontoparietal attention network .[ 21] Until the discovery of other networks, such as the frontoparietal control network , the term task-positive network referred to the DAN.[ 22] The term task-positive networks is still sometimes used to refer to all non-default-mode networks.[ 23]
In 2019, Uddin et al. proposed that dorsal frontoparietal network (D-FPN ) be used as a standard anatomical name for this network.[ 10]
References
^ a b c Vossel, S; Geng, JJ; Fink, GR (April 2014). "Dorsal and ventral attention systems: distinct neural circuits but collaborative roles" . The Neuroscientist . 20 (2): 150– 9. doi :10.1177/1073858413494269 . PMC 4107817 . PMID 23835449 .
^ Fox, M.D.; Corbetta, M.; Snyder, A.Z.; Vincent, J.L.; Raichle, M.E. (2006). "Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems" . PNAS . 103 (26): 10046– 10051. Bibcode :2006PNAS..10310046F . doi :10.1073/pnas.0604187103 . PMC 1480402 . PMID 16788060 .
^ Farrant, Kristafor; Uddin, Lucina Q. (2015-02-12). "Asymmetric development of dorsal and ventral attention networks in the human brain" . Developmental Cognitive Neuroscience . 12 : 165– 174. doi :10.1016/j.dcn.2015.02.001 . ISSN 1878-9293 . PMC 4396619 . PMID 25797238 .
^ a b Kincade, J. M.; Abrams, R. A.; Astafiev, S. V.; Shulman, G. I.; Corbetta, M. (2005). "An Event-Related Functional Magnetic Resonance Imaging Study of Voluntary and Stimulus-Driven Orienting of Attention" . Journal of Neuroscience . 25 (18): 4593– 4604. doi :10.1523/jneurosci.0236-05.2005 . PMC 6725019 . PMID 15872107 .
^ a b c Corbetta, M; Shulman, GL (March 2002). "Control of goal-directed and stimulus-driven attention in the brain". Nature Reviews. Neuroscience . 3 (3): 201– 15. doi :10.1038/nrn755 . PMID 11994752 . S2CID 1540678 .
^ a b Fox, M. D.; Snyder, A. Z.; Vincent, J. L.; Corbetta, M.; Van Essen, D. C.; Raichle, M. E. (2005). "From The Cover: The human brain is intrinsically organized into dynamic, anticorrelated functional networks" . Proceedings of the National Academy of Sciences . 102 (27): 9673– 9678. doi :10.1073/pnas.0504136102 . ISSN 0027-8424 . PMC 1157105 . PMID 15976020 .
^ Spreng, R. Nathan (2012-01-01). "The fallacy of a "task-negative" network" . Frontiers in Psychology . 3 : 145. doi :10.3389/fpsyg.2012.00145 . ISSN 1664-1078 . PMC 3349953 . PMID 22593750 .
^ Astafiev, S. V.; Shulman, G. I.; Stanley, C. M.; Snyder, A. Z.; Van Essen, D. C.; Corbetta, M. (2003). "Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing" . Journal of Neuroscience . 23 (11): 4689– 4699. doi :10.1523/JNEUROSCI.23-11-04689.2003 . PMC 6740811 . PMID 12805308 .
^ a b Szczepanski, SM; Pinsk, MA; Douglas, MM; Kastner, S; Saalmann, YB (2013-09-24). "Functional and structural architecture of the human dorsal frontoparietal attention network" . Proceedings of the National Academy of Sciences of the United States of America . 110 (39): 15806– 11. Bibcode :2013PNAS..11015806S . doi :10.1073/pnas.1313903110 . PMC 3785784 . PMID 24019489 .
^ a b c Uddin, Lucina Q.; Yeo, B. T. Thomas; Spreng, R. Nathan (2019-11-01). "Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks" . Brain Topography . 32 (6): 926– 942. doi :10.1007/s10548-019-00744-6 . ISSN 1573-6792 . PMC 7325607 . PMID 31707621 .
^ Somers, David C.; Halko, Mark A.; Levin, Emily J.; Osher, David E.; Tobyne, Sean M.; Brissenden, James A. (2018-11-05). "Topographic Cortico-cerebellar Networks Revealed by Visual Attention and Working Memory" . Current Biology . 28 (21): 3364–3372.e5. doi :10.1016/j.cub.2018.08.059 . ISSN 0960-9822 . PMC 6257946 . PMID 30344119 .
^ Somers, David C.; Halko, Mark A.; Osher, David E.; Levin, Emily J.; Brissenden, James A. (2016-06-01). "Functional Evidence for a Cerebellar Node of the Dorsal Attention Network" . Journal of Neuroscience . 36 (22): 6083– 6096. doi :10.1523/JNEUROSCI.0344-16.2016 . ISSN 0270-6474 . PMC 4887569 . PMID 27251628 .
^ Corbetta, Maurizio; Kincade, Michelle J.; Lewis, Chris; Snyder, Abraham Z.; Sapir, Ayelet (November 2005). "Neural basis and recovery of spatial attention deficits in spatial neglect" . Nature Neuroscience . 8 (11): 1603– 1610. doi :10.1038/nn1574 . ISSN 1546-1726 . PMID 16234807 . S2CID 18224715 .
^ Corbetta, M; Patel, G; Shulman, GL (2008-05-08). "The reorienting system of the human brain: from environment to theory of mind" . Neuron . 58 (3): 306– 24. doi :10.1016/j.neuron.2008.04.017 . PMC 2441869 . PMID 18466742 .
^ Braga, RM; Wilson, LR; Sharp, DJ; Wise, RJ; Leech, R (2013-07-01). "Separable networks for top-down attention to auditory non-spatial and visuospatial modalities" . NeuroImage . 74 : 77– 86. doi :10.1016/j.neuroimage.2013.02.023 . PMC 3898942 . PMID 23435206 .
^ Tamber-Rosenau, BJ; Asplund, CL; Marois, R (2018-11-01). "Functional dissociation of the inferior frontal junction from the dorsal attention network in top-down attentional control" . Journal of Neurophysiology . 120 (5): 2498– 2512. doi :10.1152/jn.00506.2018 . PMC 6295539 . PMID 30156458 .
^ Castellanos, FX; Aoki, Y (May 2016). "Intrinsic Functional Connectivity in Attention-Deficit/Hyperactivity Disorder: A Science in Development" . Biological Psychiatry. Cognitive Neuroscience and Neuroimaging . 1 (3): 253– 261. doi :10.1016/j.bpsc.2016.03.004 . PMC 5047296 . PMID 27713929 .
^ McCarthy, H; Skokauskas, N; Mulligan, A; Donohoe, G; Mullins, D; Kelly, J; Johnson, K; Fagan, A; Gill, M; Meaney, J; Frodl, T (December 2013). "Attention network hypoconnectivity with default and affective network hyperconnectivity in adults diagnosed with attention-deficit/hyperactivity disorder in childhood". JAMA Psychiatry . 70 (12): 1329– 37. doi :10.1001/jamapsychiatry.2013.2174 . PMID 24132732 .
^ Kaiser, RH; Andrews-Hanna, JR; Wager, TD; Pizzagalli, DA (June 2015). "Large-Scale Network Dysfunction in Major Depressive Disorder: A Meta-analysis of Resting-State Functional Connectivity" . JAMA Psychiatry . 72 (6): 603– 11. doi :10.1001/jamapsychiatry.2015.0071 . PMC 4456260 . PMID 25785575 .
^ Jimenez, AM; Lee, J; Wynn, JK; Cohen, MS; Engel, SA; Glahn, DC; Nuechterlein, KH; Reavis, EA; Green, MF (2016). "Abnormal Ventral and Dorsal Attention Network Activity during Single and Dual Target Detection in Schizophrenia" . Frontiers in Psychology . 7 : 323. doi :10.3389/fpsyg.2016.00323 . PMC 4781842 . PMID 27014135 .
^ Ptak, R (October 2012). "The frontoparietal attention network of the human brain: action, saliency, and a priority map of the environment". The Neuroscientist . 18 (5): 502– 15. doi :10.1177/1073858411409051 . PMID 21636849 . S2CID 19702611 .
^ Vincent, JL; Kahn, I; Snyder, AZ; Raichle, ME; Buckner, RL (December 2008). "Evidence for a frontoparietal control system revealed by intrinsic functional connectivity" . Journal of Neurophysiology . 100 (6): 3328– 42. doi :10.1152/jn.90355.2008 . PMC 2604839 . PMID 18799601 .
^ Mills, BD; Miranda-Dominguez, O; Mills, KL; Earl, E; Cordova, M; Painter, J; Karalunas, SL; Nigg, JT; Fair, DA (2018). "ADHD and attentional control: Impaired segregation of task positive and task negative brain networks" . Network Neuroscience (Cambridge, Mass.) . 2 (2): 200– 217. doi :10.1162/netn_a_00034 . PMC 6130439 . PMID 30215033 .