where is a Chern class, is the first Betti number of , and is the dimension of the positive-definite subspace of with respect to the intersection form. When is simply-connected with definite intersection form, possibly after changing orientation, one always has and . Thus taking any principal -bundle with , one obtains a moduli space of dimension five.
This moduli space is non-compact and generically smooth, with singularities occurring only at the points corresponding to reducible connections, of which there are exactly many.[3] Results of Clifford Taubes and Karen Uhlenbeck show that whilst is non-compact, its structure at infinity can be readily described.[4][5][6] Namely, there is an open subset of , say , such that for sufficiently small choices of parameter , there is a diffeomorphism
.
The work of Taubes and Uhlenbeck essentially concerns constructing sequences of ASD connections on the four-manifold with curvature becoming infinitely concentrated at any given single point . For each such point, in the limit one obtains a unique singular ASD connection, which becomes a well-defined smooth ASD connection at that point using Uhlenbeck's removable singularity theorem.[6][3]
Donaldson observed that the singular points in the interior of corresponding to reducible connections could also be described: they looked like cones over the complex projective plane. Furthermore, we can count the number of such singular points. Let be the -bundle over associated to by the standard representation of . Then, reducible connections modulo gauge are in a 1-1 correspondence with splittings where is a complex line bundle over .[3] Whenever we may compute:
,
where is the intersection form on the second cohomology of . Since line bundles over are classified by their first Chern class , we get that reducible connections modulo gauge are in a 1-1 correspondence with pairs such that . Let the number of pairs be . An elementary argument that applies to any negative definite quadratic form over the integers tells us that , with equality if and only if is diagonalizable.[3]
It is thus possible to compactify the moduli space as follows: First, cut off each cone at a reducible singularity and glue in a copy of . Secondly, glue in a copy of itself at infinity. The resulting space is a cobordism between and a disjoint union of copies of (of unknown orientations). The signature of a four-manifold is a cobordism invariant. Thus, because is definite:
,
from which one concludes the intersection form of is diagonalizable.