Deviant logic

Deviant logic is a type of logic incompatible with classical logic. Philosopher Susan Haack[1] uses the term deviant logic to describe certain non-classical systems of logic. In these logics:

  • the set of well-formed formulas generated equals the set of well-formed formulas generated by classical logic.
  • the set of theorems generated is different from the set of theorems generated by classical logic.

The set of theorems of a deviant logic can differ in any possible way from classical logic's set of theorems: as a proper subset, superset, or fully exclusive set. A notable example of this is the trivalent logic developed by Polish logician and mathematician Jan Łukasiewicz. Under this system, any theorem necessarily dependent on classical logic's principle of bivalence would fail to be valid. The term deviant logic first appears in Chapter 6 of Willard Van Orman Quine's Philosophy of Logic, New Jersey: Prentice Hall (1970), which is cited by Haack on p. 15 of her book.

Quasi-deviant and extended logics

Haack also described what she calls a quasi-deviant logic. These logics are different from pure deviant logics in that:

  • the set of well-formed formulas generated is a proper superset of the set of well-formed formulas generated by classical logic.
  • the set of theorems generated is a proper superset of the set of theorems generated by classical logic, both in that the quasi-deviant logic generates novel theorems using well-formed formulas held in common with classical logic, as well as novel theorems using novel well-formed formulas.

Finally, Haack defined a class of merely extended logics. In these,

  • the set of well-formed formulas generated is a proper superset of the set of well-formed formulas generated by classical logic.
  • the set of theorems generated is a proper superset of the set of theorems generated by classical logic, but only in that the novel theorems generated by the extended logic are only a result of novel well-formed formulas.

Some systems of modal logic meet this definition. In such systems, any novel theorem would not parse in classical logic due to modal operators. While deviant and quasi-deviant logics are typically proposed as rivals to classical logic, the impetus behind extended logics is normally only to provide a supplement to it.

Two decades later

Achille Varzi in his review[2] of the 1996 edition of Haack's book writes that the survey did not stand well the test of time, particularly with the "extraordinary proliferation of nonclassical logics in the past two decades—paraconsistent logics, linear logics, substructural logics, nonmonotonic logics, innumerable other logics for AI and computer science." He also finds that Haack's account of vagueness "is now seriously defective." He concedes however that "as a defense of a philosophical position, Deviant Logic retains its significance."

References

  1. ^ Haack, Susan (1996). 'Deviant Logic, Fuzzy Logic: Beyond the Formalism. Chicago: The University of Chicago Press. p. xxvi-291. ISBN 9780226311340. (First appeared in 1974 as Deviant Logic, published by Cambridge University Press. The 1996 edition includes some additional essays published between 1973 and 1980, particularly on fuzzy logic.)
  2. ^ Varzi, Achille. "Review" (PDF). The Philosophical Review. 107 (3): 468–471. Archived (PDF) from the original on 2016-03-04. Retrieved 2022-01-10.

Read other articles:

Montifringilla nivalis Status konservasiRisiko rendahIUCN103819582 TaksonomiKerajaanAnimaliaFilumChordataKelasAvesOrdoPasseriformesFamiliPasseridaeGenusMontifringillaSpesiesMontifringilla nivalis Linnaeus, 1766 Tata namaSinonim takson Fringilla nivalis Linnaeus, 1766 DistribusiRange of M. nivalis     Resident      Non-breeding lbs Montifringilla nivalis nivalis Montifringilla nivalis adalah burung pengicau kecil. Terlepas dari namanya, it...

 

District in Chattogram Division, Bangladesh This article is about the district. For the town, see Rangamati. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Rangamati Hill District – news · newspapers · books · scholar · JSTOR (January 2017) (Learn how and when to remove this template message) District of Ba...

 

Ancient Egyptian goddess of fertility HeqetAnimalsFrogGenderFemaleConsortKhnumPart of a series onAncient Egyptian religion Beliefs Afterlife Cosmology Duat Ma'at Mythology Numerology Philosophy Soul Practices Funerals Offerings: Offering formula Temples Priestess of Hathor Pyramids Deities (list)Ogdoad Amun Amunet Hauhet Heh Kauket Kek Naunet Nu Ennead Atum Geb Isis Nephthys Nut Osiris Set Shu Tefnut A Aati Aker Akhty Amenhotep, son of Hapu Amesemi Ammit Am-heh Amu-Aa Anat Andjety Anhur Anput...

Pour des articles plus généraux, voir Unité de mesure et Système international d'unités. Interdépendance entre les unités de base du SI. En sens horaire à partir du haut, on retrouve la seconde (temps), le kilogramme (masse), la mole (quantité de matière), la candela (intensité lumineuse), le kelvin (température), l'ampère (courant électrique) et le mètre (distance). Les unités de base du Système international sont les sept unités de mesure indépendantes (ou unités fondam...

 

عنتأنونيموس وإنترنتمواقع مرتبطة 4شان الموسوعة الدراماتيكية ويكيليكس مواضيع قناع جاي فوكس لو أوربيت أيون كانون عملية بايباك عملية تونس مشروع تشانولوجي أوب إسرائيل تسريب البريد الإلكتروني لستراتفور 2012

 

Ancient Egyptian personification of infinity or eternity HehAn aspect of Heh, holding a pair of notched palm branchesName in hieroglyphs Major cult centerHermopolis (as a member of the Ogdoad)Symbolpalm branchConsortHauhet (female aspect of Heh) Part of a series onAncient Egyptian religion Beliefs Afterlife Cosmology Duat Ma'at Mythology Numerology Philosophy Soul Practices Funerals Offerings: Offering formula Temples Priestess of Hathor Pyramids Deities (list)Ogdoad Amun Amunet Hauhet Heh Ka...

Japanese manga series by Marimo Ragawa Those Snow White NotesCover of Those Snow White Notes volume 1 by Kodanshaましろのおと(Mashiro no Oto)GenreComing-of-age, drama[1] MangaWritten byMarimo RagawaPublished byKodanshaEnglish publisherNA: Kodansha USAMagazineMonthly Shōnen MagazineDemographicShōnenOriginal runDecember 5, 2009 – August 5, 2022Volumes31 (List of volumes) Anime television seriesDirected byHiroaki AkagiWritten byKan'ichi KatōStudioShin-Ei An...

 

Eric García Nazionalità  Spagna Altezza 183 cm Peso 73 kg Calcio Ruolo Difensore Squadra  Girona Carriera Giovanili 2008-2017 Barcellona2017-2018 Manchester City Squadre di club1 2018-2021 Manchester City19 (0)2021-2023 Barcellona52 (1)2023-→  Girona11 (1) Nazionale 2016-2017 Spagna U-162 (0)2017-2018 Spagna U-1711 (2)2019 Spagna U-199 (0)2019 Spagna U-215 (0)2021 Spagna U-231 (0)2021 Spagna olimpica6 (0)2020-2022 Spagna19 (0) Palmarès  Campio...

 

Talchum Talchum atau talnori (탈춤;탈놀이) adalah pertunjukkan tradisional Korea yang dipertunjukkan oleh beberapa orang yang mengenakan topeng dan kostum untuk memainkan sebuah lakon lewat tarian, dialog dan lagu.[1][2] Sejarah Pertunjukkan kesenian ini dianggap sebagai bentuk representatif teater tradisional dan dipentaskan di seluruh Korea.[1] Asal mula talchum diperkirakan berawal dari gut yang diselenggarakan di tingkat desa (burakgut) untuk memohon panen yan...

Blacycomune Blacy – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Marna ArrondissementVitry-le-François CantoneVitry-le-François-Champagne et Der TerritorioCoordinate48°44′N 4°33′E / 48.733333°N 4.55°E48.733333; 4.55 (Blacy)Coordinate: 48°44′N 4°33′E / 48.733333°N 4.55°E48.733333; 4.55 (Blacy) Superficie17,14 km² Abitanti683[1] (2009) Densità39,85 ab./km² Altre informazioniCod. postale51300 Fu...

 

LBX1 المعرفات الأسماء المستعارة LBX1, HPX-6, HPX6, H, homeobox, ladybird homeobox 1, CCHS3 معرفات خارجية الوراثة المندلية البشرية عبر الإنترنت 604255 MGI: MGI:104867 HomoloGene: 4784 GeneCards: 10660 علم الوجود الجيني الوظيفة الجزيئية • ‏GO:0001131، ‏GO:0001151، ‏GO:0001130، ‏GO:0001204 DNA-binding transcription factor activity• sequence-specific DNA binding• ربط دي إن �...

 

TsAGI TsAGI TsAGI ialah transliterasi dari singatan Rusia untuk Центра́льный аэрогидродинами́ческий институ́т (ЦАГИ) atau Tsentralniy Aerogidrodinamicheskiy Institut, atau Institut Aerohidrodinamik Pusat. Didirikan di Moskow oleh pionir penerbangan Rusia, Nikolai Yegorovich Zhukovsky pada 1 Desember 1918. Mulai dari tahun 1925 hingga 1930an, TsAGI mengembangkan dan menjadi tuan rumah untuk AGOS (Aviatziya, Gidroaviatziya i Opytnoye Stroitelstvo,...

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要擴充。 (2013年1月1日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。 此條目需要补充更多来源。 (2013年1月1日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的...

 

莫里斯·顾夫·德姆维尔法国总理任期1968年7月10日—1969年6月20日总统夏尔·戴高乐阿兰·波厄(英语:Alain Poher) (代理)前任乔治·蓬皮杜继任雅克·沙邦-戴尔马外交部长任期1958年6月1日—1968年5月30日总统勒内·科蒂夏尔·戴高乐总理米歇尔·德勃雷乔治·蓬皮杜前任勒内·普利文继任米歇尔·德勃雷 个人资料出生1907年1月24日兰斯逝世1999年12月24日(1999歲—12—24)(92歲)巴黎职业�...

 

American government official (born 1962) Pat Shanahan redirects here. For the Australian judge, see 2004 Palm Island death in custody. Patrick M. ShanahanOfficial portrait, 2018Acting United States Secretary of DefenseIn officeJanuary 1, 2019 – June 23, 2019PresidentDonald TrumpDeputyDavid Norquist (acting)Preceded byJim MattisSucceeded byMark Esper (acting)33rd United States Deputy Secretary of DefenseIn officeJuly 19, 2017 – January 1, 2019PresidentDonald TrumpSecretar...

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

City in Minnesota, United States City in Minnesota, United StatesSaint BonifaciusCityLocation of Saint Bonifaciuswithin Hennepin County, MinnesotaCountryUnited StatesStateMinnesotaCountyHennepinGovernment • MayorKerry Taylor[1]Area[2] • Total1.04 sq mi (2.70 km2) • Land1.04 sq mi (2.69 km2) • Water0.00 sq mi (0.00 km2)Population (2020) • Total2,307 • Densit...

 

密西西比州 哥伦布城市綽號:Possum Town哥伦布位于密西西比州的位置坐标:33°30′06″N 88°24′54″W / 33.501666666667°N 88.415°W / 33.501666666667; -88.415国家 美國州密西西比州县朗兹县始建于1821年政府 • 市长罗伯特·史密斯 (民主党)面积 • 总计22.3 平方英里(57.8 平方公里) • 陸地21.4 平方英里(55.5 平方公里) • ...

إبراهيم غالي   مناصب الأمين العام   في المنصب1973  – 1974  في جبهة البوليساريو    مصطفى السيد  الأمين العام   تولى المنصب12 يوليو 2016  خطري أدوه    رؤساء الجمهورية العربية الصحراوية الديمقراطية   تولى المنصب12 يوليو 2016  خطري أدوه    معلومات شخصي...

 

Buddhist philosophy on economics Slogan in Bhutan about gross national happiness in Thimphu's School of Traditional Arts. Part of a series onEconomics History Outline Index Branches and classifications Applied Econometrics Heterodox International Micro / Macro Mainstream Mathematical Methodology Political JEL classification codes Concepts, theory and techniques Economic systems Economic growth Market National accounting Experimental economics Computational economics Game theory Operations res...