Density (polytope)

The boundary of the regular enneagram {9/4} winds around its centre 4 times, so it has a density of 4.

In geometry, the density of a star polyhedron is a generalization of the concept of winding number from two dimensions to higher dimensions, representing the number of windings of the polyhedron around the center of symmetry of the polyhedron. It can be determined by passing a ray from the center to infinity, passing only through the facets of the polytope and not through any lower dimensional features, and counting how many facets it passes through. For polyhedra for which this count does not depend on the choice of the ray, and for which the central point is not itself on any facet, the density is given by this count of crossed facets.

The same calculation can be performed for any convex polyhedron, even one without symmetries, by choosing any point interior to the polyhedron as its center. For these polyhedra, the density will be 1. More generally, for any non-self-intersecting (acoptic) polyhedron, the density can be computed as 1 by a similar calculation that chooses a ray from an interior point that only passes through facets of the polyhedron, adds one when this ray passes from the interior to the exterior of the polyhedron, and subtracts one when this ray passes from the exterior to the interior of the polyhedron. However, this assignment of signs to crossings does not generally apply to star polyhedra, as they do not have a well-defined interior and exterior.

Tessellations with overlapping faces can similarly define density as the number of coverings of faces over any given point.[1]

Polygons

The density of a polygon is the number of times that the polygonal boundary winds around its center. For convex polygons, and more generally simple polygons (not self-intersecting), the density is 1, by the Jordan curve theorem.

The density of a polygon can also be called its turning number; the sum of the turn angles of all the vertices divided by 360°. This will be an integer for all unicursal paths in a plane.

The density of a compound polygon is the sum of the densities of the component polygons.

Regular star polygons

For a regular star polygon {p/q}, the density is q. It can be visually determined by counting the minimum number of edge crossings of a ray from the center to infinity.

Examples

Polyhedra

A polyhedron and its dual have the same density.

Total curvature

A polyhedron can be considered a surface with Gaussian curvature concentrated at the vertices and defined by an angle defect. The density of a polyhedron is equal to the total curvature (summed over all its vertices) divided by 4π.[2]

For example, a cube has 8 vertices, each with 3 squares, leaving an angle defect of π/2. 8×π/2=4π. So the density of the cube is 1.

Simple polyhedra

The density of a polyhedron with simple faces and vertex figures is half of the Euler Characteristic, χ. If its genus is g, its density is 1-g.

χ = VE + F = 2D = 2(1-g).

Regular star polyhedra

Arthur Cayley used density as a way to modify Euler's polyhedron formula (VE + F = 2) to work for the regular star polyhedra, where dv is the density of a vertex figure, df of a face and D of the polyhedron as a whole:

[3]

For example, the great icosahedron, {3, 5/2}, has 20 triangular faces (df = 1), 30 edges and 12 pentagrammic vertex figures (dv = 2), giving

2·12 − 30 + 1·20 = 14 = 2D.

This implies a density of 7. The unmodified Euler's polyhedron formula fails for the small stellated dodecahedron {5/2, 5} and its dual great dodecahedron {5, 5/2}, for which VE + F = −6.

The regular star polyhedra exist in two dual pairs, with each figure having the same density as its dual: one pair (small stellated dodecahedron—great dodecahedron) has a density of 3, while the other (great stellated dodecahedron–great icosahedron) has a density of 7.

The nonconvex great icosahedron, {3,5/2} has a density of 7 as demonstrated in this transparent and cross-sectional view on the right.

General star polyhedra

Edmund Hess generalized the formula for star polyhedra with different kinds of face, some of which may fold backwards over others. The resulting value for density corresponds to the number of times the associated spherical polyhedron covers the sphere.

This allowed Coxeter et al. to determine the densities of the majority of the uniform polyhedra, which have one vertex type, and multiple face types.[4]

Nonorientable polyhedra

For hemipolyhedra, some of whose faces pass through the center, the density cannot be defined. Non-orientable polyhedra also do not have well-defined densities.

Regular 4-polytopes

The great grand stellated 120-cell has density 191.

There are 10 regular star 4-polytopes (called the Schläfli–Hess 4-polytopes), which have densities between 4, 6, 20, 66, 76, and 191. They come in dual pairs, with the exception of the self-dual density-6 and density-66 figures.

Notes

  1. ^ Coxeter, H. S. M; The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (206–214, Density of regular honeycombs in hyperbolic space)
  2. ^ Geometry and the Imagination in Minneapolis 17. The angle defect of a polyhedron; 20. Curvature of surfaces; 21. Gaussian curvature; 27.3.1 Curvature for Polyhedra pp. 32-51
  3. ^ Cromwell, P.; Polyhedra, CUP hbk (1997), pbk. (1999). (Page 258)
  4. ^ Coxeter, 1954 (Section 6, Density and Table 7, Uniform polyhedra)

References

Read other articles:

Pakuwon MallPakuwon Mall saat renovasi dan perluasan (2016)LokasiSurabaya, IndonesiaKoordinat7°17′22.5″S 112°40′30.4″E / 7.289583°S 112.675111°E / -7.289583; 112.675111Koordinat: 7°17′22.5″S 112°40′30.4″E / 7.289583°S 112.675111°E / -7.289583; 112.675111AlamatJalan Puncak Indah Lontar No.2Kelurahan Babatan, Kecamatan WiyungKota Surabaya, Jawa Timur 60227Tanggal dibuka8 November 2003 (Supermal Pakuwon Indah)13 November 200...

 

Chūichi NagumoLaksamana Madya Chuichi NagumoPengabdian Kekaisaran JepangDinas/cabangAngkatan Laut Kekaisaran JepangLama dinas1908-1944PangkatLaksamanaKesatuanKido ButaiKomandanKido Butai, Divisi I Kapal Induk, Armada Udara I, Armada III Angkatan Laut Kekaisaran Jepang, Distrik Angkatan Laut Sasebo, Distrik Angkatan Laut Kure, Armada I Angkatan Laut Jepang, Armada Kawasan Pasifik Tengah, Armada Udara 14 Angkatan Laut Kekaisaran Jepang[1]Perang/pertempuranPerang Dunia IIPertempura...

 

Concepción Cabrera de Armida Concepción Cabrera de Armida (8 Desember 1862 – 3 Maret 1937) adalah seorang penulis asal Meksiko. Ia lahir di San Luis Potosi, Meksiko dari pasangan Octaviano Cabrera Lacaveux dan Clara Arias Rivera sebagai anak ketujuh dari 12 bersaudara. Dua hari setelah lahir, ia dibaptis di Katedral San Juan de Dios. Pada 8 Desember 1872, ia menerima Sakramen Mahakudus. Ia berguru kepada para Suster Cinta Kasih (Hermanas de la Caridad). Pada 16 Januari 1876,...

Ada usul agar PT.Perkebunan II digabungkan ke artikel ini. (Diskusikan) Diusulkan sejak Maret 2022. PT Perkebunan Nusantara IILogo Perkebunan Nusantara IIJenisPerseroan terbatasIndustriPerkebunanNasibDigabung ke PTPN IPendahuluPT Perkebunan II (Persero)PT Perkebunan IX (Persero)Didirikan11 Maret 1996; 27 tahun lalu (1996-03-11)Ditutup03 Desember 2023 (2023-12-03)KantorpusatTanjung Morawa, Sumatera Utara, IndonesiaWilayah operasiSumatera Utara dan PapuaTokohkunciIrwan Perangin-angin&...

 

1808 painting by Jean-Auguste-Dominique Ingres The Valpinçon BatherArtistJean Auguste Dominique IngresYear1808MediumOil on canvasDimensions146 cm × 97.5 cm (57 in × 38.4 in)LocationLouvre, Paris The Valpinçon Bather (Fr: La Grande Baigneuse) is an 1808 painting by the French Neoclassical artist Jean-Auguste-Dominique Ingres (1780–1867), held in the Louvre since 1879. Painted while the artist was studying at the French Academy in Rome, it was ori...

 

Voce principale: Livorno. La Sala Moresca di villa Mimbelli Lista delle principali ville di Livorno, suddivise per località. Indice 1 Storia 2 Ville in città 3 Ville di Antignano 4 Ville di Ardenza 5 Ville di Montenero e dintorni 6 Ville di Monterotondo e dintorni 7 Ville di Quercianella e dintorni 8 Altre 9 Note 10 Bibliografia 11 Voci correlate 12 Altri progetti 13 Collegamenti esterni Storia Le ville di Livorno costituiscono un'importante testimonianza storica e architettonica della sto...

Latio redirects here. For the Nissan car model, see Nissan Latio. For the modern Italian administrative region, see Lazio. For other uses, see Latium (disambiguation). Historical region of Italy Latium and Campania Latium (/ˈleɪʃiəm/ LAY-shee-əm, US also /-ʃəm/ -⁠shəm;[1][2][3][4] Latin: [ˈɫati.ũː]) is the region of central western Italy in which the city of Rome was founded and grew to be the capital city of the Roman Empire. Definiti...

 

Bandar Udara Radin Intan IIRadin Intan II AirportIATA: TKGICAO: WILLWMO: 96295InformasiJenisPublikPemilikPT Aviasi Pariwisata Indonesia (Persero)PengelolaPT Angkasa Pura IIMelayaniBalameka PringtataLokasiKabupaten Lampung Selatan, Lampung, IndonesiaZona waktuWIB (UTC+07:00)Ketinggian dpl86 mdplKoordinat05°14′33″S 105°10′44″E / 5.24250°S 105.17889°E / -5.24250; 105.17889Koordinat: 05°14′33″S 105°10′44″E / 5.24250°S 105.17...

 

Bacillus anthracis Foto mikrograf Bacillus anthracis dari kultur agar dengan pengecatan Fuchsin-biru metilen.PenyakitAntraks Pewarnaan GramGram-positif TaksonomiSuperdomainBiotaDomainBacteriaKerajaanBacillatiFilumBacillotaKelasBacilliOrdoCaryophanalesFamiliBacillaceaeGenusBacillusSpesiesBacillus anthracis lbs Bacillus anthracis merupakan spesies bakteri penyebab antraks—sebuah penyakit yang umum ditemukan pada hewan ternak dan terkadang pada manusia—dan satu-satunya patogen obligat pada g...

Pour les articles homonymes, voir Albert Ier. Albert von Thurn und Taxis Titre Chef de la Maison de Thurn und Taxis 2 juin 1885 – 22 janvier 1952(66 ans, 7 mois et 20 jours) Données clés Prédécesseur Maximilian Maria de Thurn und Taxis Successeur Francois-Joseph de Thurn und Taxis Biographie Titulature Prince de Thurn und TaxisPrince du Saint-Empire Dynastie Maison de Tour et Taxis Nom de naissance Albert Maria Joseph Maximilian Lamoral Fürst von Thurn und Taxis Na...

 

Voce principale: Calcio Lecco 1912. Associazione Calcio LeccoStagione 1952-1953Sport calcio Squadra Lecco Allenatore Hugo Lamanna Presidente Mario Ceppi IV Serie1º nel girone B, promosso in Serie C. Maggiori presenzeCampionato: Corradi (38) Miglior marcatoreCampionato: Bicicli, Vecchio (12) StadioStadio Mario Rigamonti 1951-1952 1953-1954 Si invita a seguire il modello di voce Questa pagina raccoglie le informazioni riguardanti l'Associazione Calcio Lecco nelle competizioni ufficiali d...

 

Stimulus package American Recovery and Reinvestment Act of 2009Long titleAn Act making supplemental appropriations for job preservation and creation, infrastructure investment, energy efficiency and science, assistance to the unemployed, State, and local fiscal stabilization, for the fiscal year ending September 30, 2009, and for other purposes.Acronyms (colloquial)ARRANicknamesRecovery ActEnacted bythe 111th United States CongressEffectiveFebruary 17, 2009CitationsPublic law111-5Statute...

Class of salt-tolerant archaea Halobacteria redirects here. For the genus, see Halobacterium. Haloarchaea Halobacterium sp. strain NRC-1, each cell about 5 µm in length. Scientific classification Domain: Archaea Kingdom: Euryarchaeota Phylum: Euryarchaeota Class: HalobacteriaGrant et al. 2002 Order Halobacteriales Haloferacales Natrialbales Synonyms Halomebacteria Cavalier-Smith 2002 Haloarchaea DasSarma and DasSarma 2008 Haloarchaea (halophilic archaea, halophilic archaebacteria, halobacter...

 

American author Jim Fergus Jim Fergus (born 1950) is an American author.[1] He has a degree in English from Colorado College and has worked as a tennis teacher and full-time freelance writer. His first novel was One Thousand White Women: The Journals of May Dodd,[2] which won the 1999 Fiction of the Year Award from the Mountains & Plains Booksellers Association and sold over one million copies in the United States.[citation needed] The French translation was on the...

 

Coppa Italia Serie C 2023-2024 Competizione Coppa Italia Serie C Sport Calcio Edizione 51ª Organizzatore Lega Italiana Calcio Professionistico Date dal 3 ottobre 2023al 2 aprile 2024 Luogo  Italia Partecipanti 60 Risultati Vincitore Catania(1º titolo) Secondo Padova Semi-finalisti RiminiLucchese Statistiche Miglior marcatore Simone Palombi (5) Incontri disputati 62 Gol segnati 172 (2,77 per incontro) Cronologia della competizione 2022-2023 Manuale La Coppa Italia Ser...

Halland Hallands länDaerah di Swedia Lambang kebesaran NegaraSwediaIbu KotaHalmstadPemerintahan • GubernurLars-Erik Lövdén • Dewan KotaLandstinget HallandLuas • Total5.454 km2 (2,106 sq mi)Populasi (30 Juni 2014)[1] • Total308.735 • Kepadatan57/km2 (150/sq mi)Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)PDB NominalSEK 61,339 juta (2004)PDB per kapitaSEK 221.000NUTS RegionSE...

 

العلاقات البنينية التونسية بنين تونس   بنين   تونس تعديل مصدري - تعديل   العلاقات البنينية التونسية هي العلاقات الثنائية التي تجمع بين بنين وتونس.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة بنين تونس المساح�...

 

Genre of music Not to be confused with New wave music. New-ageStylistic originsElectronicambientfolkworldclassicalkrautrockrockeasy listeningminimalprogressive rockCultural origins1960s and early 1970s, Europe and United StatesSubgenres Space music biomusic progressive electronic Neoclassical new-age music Fusion genresCeltic fusionOther topics New Age meditation environmentalism List of new-age music artists vaporwave New-age is a genre of music intended to create artistic inspiration, relax...

Altavilla Silentina Altavilla Silentina adalah sebuah kota dan Comune terletak di provinsi Salerno, Campania, sekitar 100 km selatan Naples, Italia. Altavilla Silentina tersebar pada dua punggung bukit. Hal ini terlindung di sisi timur laut oleh Pegunungan Alburni dan di Barat melihat dataran dari Sungai Sele dan Laut Tyrrhenian . Panorama termasuk pulau Capri, pegunungan dari Amalfi Coast dan Teluk Salerno di bagian utara. lbsKomune di Provinsi Salerno, CampaniaAcerno • Agropoli • A...

 

←→Декабрь Пн Вт Ср Чт Пт Сб Вс             1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31           2024 год Содержание 1 Праздники и памятные дни 1.1 Профессиональные 1.2 Религиозные 1.3 Именины 2 События 2.1 До XIX века 2.2 XIX век 2.3 XX век 2.4 XXI век 3 Родились 3.1 До XIX&#...