Data-driven control system

Data-driven control systems are a broad family of control systems, in which the identification of the process model and/or the design of the controller are based entirely on experimental data collected from the plant.[1]

In many control applications, trying to write a mathematical model of the plant is considered a hard task, requiring efforts and time to the process and control engineers. This problem is overcome by data-driven methods, which fit a system model to the experimental data collected, choosing it in a specific models class. The control engineer can then exploit this model to design a proper controller for the system. However, it is still difficult to find a simple yet reliable model for a physical system, that includes only those dynamics of the system that are of interest for the control specifications. The direct data-driven methods allow to tune a controller, belonging to a given class, without the need of an identified model of the system. In this way, one can also simply weight process dynamics of interest inside the control cost function, and exclude those dynamics that are out of interest.

Overview

The standard approach to control systems design is organized in two-steps:

  1. Model identification aims at estimating a nominal model of the system , where is the unit-delay operator (for discrete-time transfer functions representation) and is the vector of parameters of identified on a set of data. Then, validation consists in constructing the uncertainty set that contains the true system at a certain probability level.
  2. Controller design aims at finding a controller achieving closed-loop stability and meeting the required performance with .

Typical objectives of system identification are to have as close as possible to , and to have as small as possible. However, from an identification for control perspective, what really matters is the performance achieved by the controller, not the intrinsic quality of the model.

One way to deal with uncertainty is to design a controller that has an acceptable performance with all models in , including . This is the main idea behind robust control design procedure, that aims at building frequency domain uncertainty descriptions of the process. However, being based on worst-case assumptions rather than on the idea of averaging out the noise, this approach typically leads to conservative uncertainty sets. Rather, data-driven techniques deal with uncertainty by working on experimental data, and avoiding excessive conservativism.

In the following, the main classifications of data-driven control systems are presented.

Indirect and direct methods

There are many methods available to control the systems. The fundamental distinction is between indirect and direct controller design methods. The former group of techniques is still retaining the standard two-step approach, i.e. first a model is identified, then a controller is tuned based on such model. The main issue in doing so is that the controller is computed from the estimated model (according to the certainty equivalence principle), but in practice . To overcome this problem, the idea behind the latter group of techniques is to map the experimental data directly onto the controller, without any model to be identified in between.

Iterative and noniterative methods

Another important distinction is between iterative and noniterative (or one-shot) methods. In the former group, repeated iterations are needed to estimate the controller parameters, during which the optimization problem is performed based on the results of the previous iteration, and the estimation is expected to become more and more accurate at each iteration. This approach is also prone to on-line implementations (see below). In the latter group, the (optimal) controller parametrization is provided with a single optimization problem. This is particularly important for those systems in which iterations or repetitions of data collection experiments are limited or even not allowed (for example, due to economic aspects). In such cases, one should select a design technique capable of delivering a controller on a single data set. This approach is often implemented off-line (see below).

On-line and off-line methods

Since, on practical industrial applications, open-loop or closed-loop data are often available continuously, on-line data-driven techniques use those data to improve the quality of the identified model and/or the performance of the controller each time new information is collected on the plant. Instead, off-line approaches work on batch of data, which may be collected only once, or multiple times at a regular (but rather long) interval of time.

Iterative feedback tuning

The iterative feedback tuning (IFT) method was introduced in 1994,[2] starting from the observation that, in identification for control, each iteration is based on the (wrong) certainty equivalence principle.

IFT is a model-free technique for the direct iterative optimization of the parameters of a fixed-order controller; such parameters can be successively updated using information coming from standard (closed-loop) system operation.

Let be a desired output to the reference signal ; the error between the achieved and desired response is . The control design objective can be formulated as the minimization of the objective function:

Given the objective function to minimize, the quasi-Newton method can be applied, i.e. a gradient-based minimization using a gradient search of the type:

The value is the step size, is an appropriate positive definite matrix and is an approximation of the gradient; the true value of the gradient is given by the following:

The value of is obtained through the following three-step methodology:

  1. Normal Experiment: Perform an experiment on the closed loop system with as controller and as reference; collect N measurements of the output , denoted as .
  2. Gradient Experiment: Perform an experiment on the closed loop system with as controller and 0 as reference ; inject the signal such that it is summed to the control variable output by , going as input into the plant. Collect the output, denoted as .
  3. Take the following as gradient approximation: .

A crucial factor for the convergence speed of the algorithm is the choice of ; when is small, a good choice is the approximation given by the Gauss–Newton direction:

Noniterative correlation-based tuning

Noniterative correlation-based tuning (nCbT) is a noniterative method for data-driven tuning of a fixed-structure controller.[3] It provides a one-shot method to directly synthesize a controller based on a single dataset.

Suppose that denotes an unknown LTI stable SISO plant, a user-defined reference model and a user-defined weighting function. An LTI fixed-order controller is indicated as , where , and is a vector of LTI basis functions. Finally, is an ideal LTI controller of any structure, guaranteeing a closed-loop function when applied to .

The goal is to minimize the following objective function:

is a convex approximation of the objective function obtained from a model reference problem, supposing that .

When is stable and minimum-phase, the approximated model reference problem is equivalent to the minimization of the norm of in the scheme in figure.

The idea is that, when G is stable and minimum phase, the approximated model reference problem is equivalent to the minimization of the norm of .

The input signal is supposed to be a persistently exciting input signal and to be generated by a stable data-generation mechanism. The two signals are thus uncorrelated in an open-loop experiment; hence, the ideal error is uncorrelated with . The control objective thus consists in finding such that and are uncorrelated.

The vector of instrumental variables is defined as:

where is large enough and , where is an appropriate filter.

The correlation function is:

and the optimization problem becomes:

Denoting with the spectrum of , it can be demonstrated that, under some assumptions, if is selected as:

then, the following holds:

Stability constraint

There is no guarantee that the controller that minimizes is stable. Instability may occur in the following cases:

  • If is non-minimum phase, may lead to cancellations in the right-half complex plane.
  • If (even if stabilizing) is not achievable, may not be stabilizing.
  • Due to measurement noise, even if is stabilizing, data-estimated may not be so.

Consider a stabilizing controller and the closed loop transfer function . Define:

Theorem
The controller stabilizes the plant if
  1. is stable
  2. s.t.

Condition 1. is enforced when:

  • is stable
  • contains an integrator (it is canceled).

The model reference design with stability constraint becomes:

A convex data-driven estimation of can be obtained through the discrete Fourier transform.

Define the following:

For stable minimum phase plants, the following convex data-driven optimization problem is given:

Virtual reference feedback tuning

Virtual Reference Feedback Tuning (VRFT) is a noniterative method for data-driven tuning of a fixed-structure controller. It provides a one-shot method to directly synthesize a controller based on a single dataset.

VRFT was first proposed in [4] and then extended to LPV systems.[5] VRFT also builds on ideas given in [6] as .

The main idea is to define a desired closed loop model and to use its inverse dynamics to obtain a virtual reference from the measured output signal .

The main idea is to define a desired closed loop model M and to use its inverse dynamics to obtain a virtual reference from the measured output signal y.

The virtual signals are and

The optimal controller is obtained from noiseless data by solving the following optimization problem:

where the optimization function is given as follows:

See also

References

  1. ^ Bazanella, A.S., Campestrini, L., Eckhard, D. (2012). Data-driven controller design: the approach. Springer, ISBN 978-94-007-2300-9, 208 pages.
  2. ^ Hjalmarsson, H., Gevers, M., Gunnarsson, S., & Lequin, O. (1998). Iterative feedback tuning: theory and applications. IEEE control systems, 18(4), 26–41.
  3. ^ van Heusden, K., Karimi, A. and Bonvin, D. (2011), Data-driven model reference control with asymptotically guaranteed stability. Int. J. Adapt. Control Signal Process., 25: 331–351. doi:10.1002/acs.1212
  4. ^ Campi, Marco C., Andrea Lecchini, and Sergio M. Savaresi. "Virtual reference feedback tuning: a direct method for the design of feedback controllers." Automatica 38.8 (2002): 1337–1346.
  5. ^ Formentin, S., Piga, D., Tóth, R., & Savaresi, S. M. (2016). Direct learning of LPV controllers from data. Automatica, 65, 98–110.
  6. ^ Guardabassi, Guido O., and Sergio M. Savaresi. "Approximate feedback linearization of discrete-time non-linear systems using virtual input direct design." Systems & Control Letters 32.2 (1997): 63–74.

An Introduction to Data-Driven Control Systems Ali Khaki-Sedigh

ISBN: 978-1-394-19642-5 November 2023 Wiley-IEEE Press 384 Pages

Read other articles:

Casey AbramsInformasi latar belakangLahir12 Februari 1991 (umur 33)AsalIdyllwild, California, Amerika SerikatGenreJazz, rockPekerjaanPenyanyiInstrumenVokal, BassTahun aktif2011-sekarang Casey Abrams (lahir 12 Februari 1991) adalah penyanyi asal Amerika Serikat asal Illinois dan pada saat ini tinggal di Idyllwild, California. Abrams merupakan finalis 11 besar American Idol musim kesepuluh. Pranala luar Casey Abrams Diarsipkan 2011-10-28 di Wayback Machine. on American Idol lbsAmerican Ido...

 

Tale of the Nine TailedPoster promosiHangul구미호뎐 GenreDramaFantasiPengembangStudio DragonDitulis olehHan Woo-riSutradaraKang Shin-hyoPemeranLee Dong-wookJo Bo-ahKim BumNegara asalKorea SelatanBahasa asliKoreaJmlh. episode16ProduksiProduser eksekutifKim Young kyuProduserPark Jin-hyung Park Seung-wooRumah produksiHow PicturesDistributortvNRilis asliJaringantvNRilis7 Oktober (2020-10-07) –3 Desember 2020 (2020-12-3) Tale of the Nine Tailed[a] (Hangul: �...

 

BeerschotNama lengkapKoninklijke Beerschot Voetbalclub AntwerpenJulukanDe Kielse RattenDe MannekesPurple White ArmyBerdiri2013; 11 tahun lalu (2013)StadionOlympisch StadionAntwerp, Belgium(Kapasitas: 12,771[1][2])PemilikAbdullah bin Musaid Al SaudKetuaFrancis VranckenManajerGreg Vanderidt (caretaker)LigaDivisi Kedua2022–2023ke-3Situs webSitus web resmi klub Kostum kandang Kostum tandang Koninklijke Beerschot Voetbalclub Antwerpen, atau singkatnya Beerschot, adalah ...

العلاقات الكويتية الكمبودية الكويت كمبوديا   الكويت   كمبوديا تعديل مصدري - تعديل   العلاقات الكويتية الكمبودية هي العلاقات الثنائية التي تجمع بين الكويت وكمبوديا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارن...

 

2011 single by Javier ColonStitch by StitchSingle by Javier ColonReleasedJune 28, 2011RecordedJune 2011GenrePopLength3:16LabelUniversal RepublicSongwriter(s)Dave Bassett, David Hodges and Lindy RobbinsProducer(s)Rodney Darkchild JerkinsJavier Colon singles chronology Stitch by Stitch As Long as We Got Love Audio samplefilehelp Stitch by Stitch[1] is the winner's song of the first ever American The Voice by Javier Colon, the winner of the first season of the show. Promotion Colon perfo...

 

Aire d'attraction de Dompierre-sur-Besbre Localisation de l'aire d'attraction de Dompierre-sur-Besbre dans le département de l'Allier. Géographie Pays France Région Auvergne-Rhône-Alpes Département Allier Caractéristiques Type Aire d'attraction d'une ville Code Insee 627 Catégorie Aires de moins de 50 000 habitants Nombre de communes 3 Population 4 860 hab. (2021) modifier  L'aire d'attraction de Dompierre-sur-Besbre est un zonage d'étude défini par l'Insee ...

The Turn of the ScrewSutradaraTim FywellProduserColin WrattenSkenarioSandy WelchBerdasarkanThe Turn of the Screwoleh Henry JamesPerusahaanproduksiBBCDistributorAcorn Media UKTanggal rilis 30 Desember 2009 (2009-12-30) Durasi89 menit[1]NegaraBritania RayaBahasaEnglish The Turn of the Screw (juga disebut sebagai Ghost Story: The Turn of the Screw) adalah film televisi berdasarkan cerita horor karangan Henry James tahun 1898 yang berjudul sama. Diproduksi oleh BBC, film ini tayang p...

 

GAZ GroupTraded asMCX: GAZA, MCX: GAZAPIndustryAutomotiveFounded2005; 19 years ago (2005)HeadquartersNizhny Novgorod, RussiaProductsTrucks & BusesRevenue$2.82 billion[1] (2017)Operating income$85 million[1] (2017)Net income$60 million[1] (2017)Total assets$1.92 billion[1] (2017)Total equity$60.3 million[1] (2017)OwnersJSC Russian Machines (61%)[2]ParentRussian Mach...

 

Pour les articles homonymes, voir Dance (homonymie) et EDM. Ne doit pas être confondu avec Danse électro. Genre musical Données clés Blues Chanson française Dubstep Drum and bass Easy listening Electronic dance music Electronica Funk Gospel Heavy metal Jazz Musique classique Musique country Musique électronique Musique expérimentale Musique folk Musique instrumentale Musique latino-américaine Musique soul Musiques du monde New age Pop Rap Reggae RnB contemporain Rock Techno Liste de ...

هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد  القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...

 

66th 12 Hours of Sebring race Nissan Onroak DPi #22 of Tequila Patrón ESM which won the 2018 12 Hours of Sebring Sebring International Raceway The 66th Mobil 1 12 Hours of Sebring Presented by Advance Auto Parts was an endurance sports car racing event held at Sebring International Raceway near Sebring, Florida from 15 to 17 March 2018. The race was the second round of the 2018 WeatherTech SportsCar Championship, as well as the second round of the North American Endurance Cup. The race was w...

 

Pour l’article homonyme, voir Indian Grove. Indian Motorcycle Company Le logo actuel de la marque. Création 1901 Fondateurs George M. HendeeOscar Hedström Personnages clés Stephen JuliusSteve Heese Forme juridique Société à responsabilité limitée Siège social Medina (Minnesota) États-Unis Activité Construction de véhicules automobiles, de remorques et semi-remorques Produits Motos Société mère Polaris Industries Sociétés sœurs Victory Motorcycles Filiales Victory Mot...

Political convention of the Republican Party 1972 Republican National Convention1972 presidential election Nominees Nixon and AgnewConventionDate(s)August 21–23, 1972CityMiami Beach, FloridaVenueMiami Beach Convention CenterKeynote speakerAnne ArmstrongCandidatesPresidential nomineeRichard M. Nixon of CaliforniaVice presidential nomineeSpiro T. Agnew of Maryland‹ 1968 · 1976 › The 1972 Republican National Convention was held from August 21 to August 23, 1972, at the...

 

Irving CummingsCummings pada tahun 1914LahirIrving Camisky(1888-10-09)9 Oktober 1888New York City, New YorkMeninggal18 April 1959(1959-04-18) (umur 70)Los Angeles, CaliforniaMakamHollywood Forever CemeteryKebangsaanAmerika SerikatPekerjaanSutradara, pemeranTahun aktif1903–1959Suami/istriRuth Sinclair (m.1917) Irving Camisky (9 Oktober 1888 – 18 April 1959) adalah seorang pemeran, sutradara, produser dan penulis asal Amerika. Filmografi Pemeran The Three of Us (191...

 

Fairchild Model 91, A-942Un Fairchild A-942 in servizio RAF fotografato in Egitto.DescrizioneTipoidrovolante di linea Equipaggio2 ProgettistaAlfred Gassner Costruttore Pan Am Data primo volo5 aprile 1935 Utilizzatore principale USAAF Esemplari4 Dimensioni e pesiTavole prospettiche Lunghezza14,2 m (46 ft 8 in) Apertura alare17,07 m (56 ft 0 in) Altezza4,47 m (14 ft 8 in) Superficie alare44,9 m² (483 ft²) Peso a vuoto2 992 kg (6 596 lb) Peso carico4 763 kg (10 500 lb) Pass...

Mountain in Georgia, United States Mount OglethorpeMount Oglethorpe in OctoberHighest pointElevation3,288 ft (1,002 m)[1]Prominence1,258 ftCoordinates34°29′10″N 84°19′53″W / 34.486229°N 84.331463°W / 34.486229; -84.331463[1]GeographyMount OglethorpeLocation of Mount Oglethorpe in Georgia LocationPickens County, Georgia, U.S.Parent rangeBlue Ridge MountainsTopo mapUSGS NelsonClimbingEasiest routeDrive Mount Oglethorpe is a moun...

 

Hôtel de NupcesHôtel de NupcesPrésentationType Hôtel particulierDestination initiale demeure de Jean-Georges de NupcesDestination actuelle copropriété privéeStyle ClassiqueConstruction vers 1716-1728Patrimonialité Inscrit MH (1950)LocalisationPays FranceDépartement Haute-GaronneCommune ToulouseAdresse no 15 rue de la BourseCoordonnées 43° 36′ 03″ N, 1° 26′ 32″ ELocalisation sur la carte de FranceLocalisation sur la carte de Toulousem...

 

American inventor (1864–1927) Ferdinand N. Ferd Kahler, Sr.BornFerdinand Kahler(1864-11-20)November 20, 1864Hermsdorf, Bohemia, Austrian EmpireDiedNovember 14, 1927(1927-11-14) (aged 62)New Albany, Indiana, United StatesOccupation(s)Inventor, Entrepreneur Ferdinand Nickolas Kahler Sr. (November 20, 1864 – November 14, 1927) was an American inventor, entrepreneur and automobile pioneer who founded The Kahler Co. in New Albany, Indiana. He was a manufacturer of wood and lumber products...

Greek astronomer and mathematician (c.390–c.340 BC) Not to be confused with Eudoxus of Cyzicus. Eudoxus of CnidusBornc. 390 BCCnidus, Anatolia(now Yazıköy, Muğla, Turkey)Diedc. 340 BCCnidus, AnatoliaKnown forKampyle of EudoxusConcentric spheresScientific careerFieldsMathematicsPhysicsGeographyAstronomyMedicinePhilosophy Eudoxus of Cnidus (/ˈjuːdəksəs/; Ancient Greek: Εὔδοξος ὁ Κνίδιος, Eúdoxos ho Knídios; c. 390 – c. 340 BC) was ...

 

دون فراي (بالإنجليزية: Donald Frye)‏  معلومات شخصية اسم الولادة (بالإنجليزية: Donald Frye)‏  الميلاد 23 نوفمبر 1965 (العمر 58 سنة)سييرا فيستا، الولايات المتحدة مواطنة الولايات المتحدة  أسماء أخرى المفترس الطول 185 سنتيمتر  الوزن 93 كيلوغرام  الحياة العملية المدرسة الأم جامعة و...