Conway's 99-graph problem

Unsolved problem in mathematics:
Does there exist a strongly regular graph with parameters (99,14,1,2)?
A 9-vertex graph in which every edge belongs to a unique triangle and every non-edge is the diagonal of a unique quadrilateral. The 99-graph problem asks for a 99-vertex graph with the same property.

In graph theory, Conway's 99-graph problem is an unsolved problem asking whether there exists an undirected graph with 99 vertices, in which each two adjacent vertices have exactly one common neighbor, and in which each two non-adjacent vertices have exactly two common neighbors. Equivalently, every edge should be part of a unique triangle and every non-adjacent pair should be one of the two diagonals of a unique 4-cycle. John Horton Conway offered a $1000 prize for its solution.[1]

Properties

If such a graph exists, it would necessarily be a locally linear graph and a strongly regular graph with parameters (99,14,1,2). The first, third, and fourth parameters encode the statement of the problem: the graph should have 99 vertices, every pair of adjacent vertices should have 1 common neighbor, and every pair of non-adjacent vertices should have 2 common neighbors. The second parameter means that the graph is a regular graph with 14 edges per vertex.[2]

If this graph exists, it cannot have symmetries that take every vertex to every other vertex.[3] Additional restrictions on its possible groups of symmetries are known.[4][5]

History

The possibility of a graph with these parameters was already suggested in 1969 by Norman L. Biggs,[6] and its existence noted as an open problem by others before Conway.[3][7][8][9] Conway himself had worked on the problem as early as 1975,[7] but offered the prize in 2014 as part of a set of problems posed in the DIMACS Conference on Challenges of Identifying Integer Sequences. Other problems in the set include the thrackle conjecture, the minimum spacing of Danzer sets, and the question of who wins after the move 16 in the game sylver coinage.[1]

More generally, there are only five possible combinations of parameters for which a strongly regular graph could exist with each edge in a unique triangle and each non-edge forming the diagonal of a unique quadrilateral. It is only known that graphs exist with two of these five combinations. These two graphs are the nine-vertex Paley graph (the graph of the 3-3 duoprism) with parameters (9,4,1,2) and the Berlekamp–van Lint–Seidel graph with parameters (243,22,1,2). The parameters for which graphs are unknown are: (99,14,1,2), (6273,112,1,2) and (494019,994,1,2). The 99-graph problem describes the smallest of these combinations of parameters for which the existence of a graph is unknown.[4]

References

  1. ^ a b Conway, John H., Five $1,000 Problems (Update 2017) (PDF), On-Line Encyclopedia of Integer Sequences, retrieved 2019-02-12. See also OEIS sequence A248380.
  2. ^ Zehavi, Sa'ar; David de Olivera, Ivo Fagundes (2017), Not Conway's 99-graph problem, arXiv:1707.08047
  3. ^ a b Wilbrink, H. A. (August 1984), "On the (99,14,1,2) strongly regular graph", in de Doelder, P. J.; de Graaf, J.; van Lint, J. H. (eds.), Papers dedicated to J. J. Seidel (PDF), EUT Report, vol. 84-WSK-03, Eindhoven University of Technology, pp. 342–355
  4. ^ a b Makhnev, A. A.; Minakova, I. M. (January 2004), "On automorphisms of strongly regular graphs with parameters , ", Discrete Mathematics and Applications, 14 (2), doi:10.1515/156939204872374, MR 2069991, S2CID 118034273
  5. ^ Behbahani, Majid; Lam, Clement (2011), "Strongly regular graphs with non-trivial automorphisms", Discrete Mathematics, 311 (2–3): 132–144, doi:10.1016/j.disc.2010.10.005, MR 2739917
  6. ^ Biggs, Norman (1971), Finite Groups of Automorphisms: Course Given at the University of Southampton, October–December 1969, London Mathematical Society Lecture Note Series, vol. 6, London and New York: Cambridge University Press, p. 111, ISBN 9780521082150, MR 0327563
  7. ^ a b Guy, Richard K. (1975), "Problems", in Kelly, L. M. (ed.), The Geometry of Metric and Linear Spaces, Lecture Notes in Mathematics, vol. 490, Berlin and New York: Springer-Verlag, pp. 233–244, doi:10.1007/BFb0081147, ISBN 978-3-540-07417-5, MR 0388240. See problem 7 (J. J. Seidel), pp. 237–238.
  8. ^ Brouwer, A. E.; Neumaier, A. (1988), "A remark on partial linear spaces of girth 5 with an application to strongly regular graphs", Combinatorica, 8 (1): 57–61, doi:10.1007/BF02122552, MR 0951993, S2CID 206812356
  9. ^ Cameron, Peter J. (1994), Combinatorics: topics, techniques, algorithms, Cambridge: Cambridge University Press, p. 331, ISBN 0-521-45133-7, MR 1311922

Read other articles:

Demokrasi di Pakistan adalah sebuah proses dalam perkembangan kehidupan sosial dan politik di Pakistan, terutama proses demokratisasi atau proses transformasi sistem pemerintahan dari non-demokrasi menuju demokrasi yang terjadi di Pakistan.[1] Latar Belakang Muhammad Ali Jinnah saat masih muda. Ia kemudian menjadi founding father negara Pakistan. Ketika Pakistan merdeka dan memisahkan diri dari India pada 14 Agustus 1947, Pakistan terdiri atas dua wilayah yang menjadi teritori kedaula...

 

Family-founded supermarket chain in the United States D'Agostino SupermarketsFormerlyYorkville Food ShoppeD'Agostino BrothersCompany typePrivateIndustryGrocery retailFounded1932FoundersPasquale Patsy D'AgostinoNicola Nick D'AgostinoHeadquartersLarchmont, New York, United StatesNumber of locations26 stores (peak)[1]10 stores (2019)[2]Area servedNew York CityWestchester CountyKey peopleNicholas D'Agostino Jr., ChairmanNicholas D'Agostino III, CEOG. Robert James, PresidentRevenue...

 

Hernando de Lerma Hernando de Lerma (1º novembre 1541 – ...) è stato un conquistador, politico, avvocato e fondatore di città originario di Siviglia, Spagna. Biografia Statua di Hernando de Lerma a Salta Il 13 novembre 1577 Lerma fu nominato governatore di San Miguel de Tucumán, (nell'odierna Argentina) da re Filippo II di Spagna. Descritto dagli storici come un uomo violento, de Lerma ebbe problemi con molte persone di quel territorio, compresi i propri compatrioti. Tra le persone che ...

Binding around the end of a rope to prevent it from fraying For the punishment tool occasionally featuring knots at the end of its lashing ropes, see Cat-o'-nine-tails. Common whipping knot A whipping knot or whipping is a binding of marline twine or whipcord around the end of a rope to prevent its natural tendency to fray. Some whippings are finished cleanly, as by drawing the bitter end of the cordage beneath the whipping itself. Others are tied off or have the end(s) of the twine sewn thro...

 

Neues MuseumInformations généralesNom local (de) Neues MuseumOuverture 1859Visiteurs par an 777 000 (2017)Site web smb.museumBâtimentArchitectes Friedrich August Stüler, David Chipperfield Architects (d)Protection Monument du patrimoine architectural (d)LocalisationAdresse Bodestraße (d) arrondissement de Mitte AllemagneCoordonnées 52° 31′ 13″ N, 13° 23′ 51″ Emodifier - modifier le code - modifier Wikidata Le Neues Museum (« N...

 

American mixed martial artist (1974–2023) Aaron BrinkBrink in 2005BornAaron Franklin Brink(1974-11-12)November 12, 1974Newport Beach, California, U.S.DiedMay 26, 2023(2023-05-26) (aged 48)[1]El Cajon, California, U.S.Other namesDick DelawareThe FrijoleroHeight6 ft 3 in (1.91 m)Weight231 lb (105 kg; 16.5 st)DivisionHeavyweightLight HeavyweightReach75 in (191 cm)StanceOrthodoxFighting out ofSan Diego, CaliforniaTeamThe CompoundThe ArenaTeam...

Северный морской котик Самец Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапси...

 

FlowerPoster FilmSutradaraMax WinklerProduser Brandon James Eric B. Fleischman Sean Tabibian Matt Spicer Ditulis oleh Alex McAulay Max Winkler Matt Spicer Pemeran Zoey Deutch Kathryn Hahn Tim Heidecker Adam Scott Joey Morgan Dylan Gelula Penata musikJoseph StephensSinematograferCaroline CostaPenyuntingSarah Beth ShapiroPerusahaanproduksi Rough House Pictures Diablo Entertainment DistributorThe OrchardTanggal rilis 20 April 2017 (2017-04-20) (Tribeca) 16 Maret 2018 (2018-03...

 

Roberto Speranza Menteri kesehatanPetahanaMulai menjabat 5 September 2019Perdana MenteriGiuseppe ContePendahuluGiulia GrilloPenggantiPetahanaSekretaris dari Article OnePetahanaMulai menjabat 7 April 2019PendahuluKantor didirikanPenggantiPetahanaKoordinator Article OneMasa jabatan25 Februari 2017 – 7 April 2019PendahuluKantor didirikanPenggantiArturo ScottoAnggota Dewan Perwakilan RakyatPetahanaMulai menjabat 15 Maret 2013Daerah pemilihanBasilicata (2013–2018)Tuscany (...

Football team of the University of Akron Akron Zips football2023 Akron Zips football team First season1891Athletic directorCharles GuthrieHead coachJoe Moorhead 2nd season, 4–20 (.167)StadiumInfoCision Stadium(capacity: 27,881[1])Year built2009Field surfaceProGrassLocationAkron, OhioNCAA divisionDivision I FBSConferenceMid-American ConferenceDivisionEastPast conferencesOhio Athletic Conference (1915–1936, 1946–1965)Mid-Continent Conference (1978–1979)Ohio Valley Conference (19...

 

U.S. Navy facility for development of naval aviation training and tactics NAWDC logo The Naval Aviation Warfighting Development Center (NAWDC, pronounced NAW-DIK) was formerly known as the Naval Strike and Air Warfare Center (NSAWC, pronounced EN-SOCK) at Naval Air Station Fallon located in the city of Fallon in western Nevada. It is the center of excellence for naval aviation training and tactics development. NAWDC provides service to aircrews, squadrons and air wings throughout the United S...

 

Wu Chinese language spoken in Shanghai This article is about the language of Shanghai. For related languages and dialects, see Wu Chinese. For other uses, see Shanghainese (disambiguation). Shanghainese上海閒話 / 上海闲话, zaon-he ghe-gho 滬語 / 沪语, wu-gniuPronunciation[zɑ̃̀hɛ́ ɦɛ̀ɦó], [ɦùɲý]Native toChinaRegionShanghainese proper traditionally in the urban center of Shanghai; Bendihua varieties spoken throughout Shanghai and parts of nearby Na...

King of León Alfonso IVKing Alfonso in a 15th-century manuscript of the Semblanzas de reyesKing of LeónReign925–931PredecessorFruela IISuccessorRamiro IIBornc. 890sDiedAugust 933Monastery of RuiforcoBurialBasilica of San IsidoroConsortOnneca Sánchez of PamplonaIssueOrdoño IVFruelaDynastyAstur-Leonese dynastyFatherOrdoño II of LeónMotherElvira MenéndezReligionChalcedonian Christianity Alfonso IV (c. 890s – 933), called the Monk (Spanish: el Monje), was King ...

 

Open automotive bed For other uses, see Tonneau (disambiguation). Tonneau cover on a Ford F-150 A tonneau (US: /tʌˈnoʊ/ or UK: /ˈtɒnoʊ/) is an area of a car, truck, or boat open at the top. It can be for passengers or cargo. When applied to trucks it refers to their bed (American English) or tray (British English). Origin of term ÷1910 Buick side-entrance tonneau without tonneau cover 1903 Sunbeam rear-entrance tonneau A tonneau was originally an open rear passenger compartment, rounde...

 

النشيد الوطني الفيتنامي (بالفيتنامية: Tiến quân ca)‏  البلد فيتنام  تأليف فان كاو  تلحين فان كاو (1944) تاريخ الاعتماد 1944  اللغة الفيتنامية  استمع للنشيد   تعديل مصدري - تعديل   النشيد الوطني الفيتنامي (بالفيتنامية:Tiến Quân Ca) ، هو النشيد الوطني لفيتنام ، تم إعتماده...

Grenoble SMH38 Handball Généralités Nom complet Grenoble Saint-Martin-d'Hères Métropole Isère Handball Surnoms Les Rouge & Blanc Noms précédents Entente Sportive Saint-Martin-d'Hères (1965-1991), Saint-Martin-d'Hères GUC (1991-1996), Grenoble-Saint-Martin-d'Hères GUC (1996-2018), GSMH38 (depuis 2018) Fondation 1965 Couleurs Rouge et blanc Salle Halle Pablo-Neruda 35 rue Henri Wallon38400 Saint-Martin-d'Hères (620 places) Siège 17 rue du Pré-Ruffier, 38400 Saint-Martin-...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Arrested decay – news · newspapers · books · scholar · JSTOR (February 2023) (Learn how and when to remove this message) Arrested decay is a term coined by the U.S. State of California, to explain how it would preserve its Bodie State Historic Park. A more comm...

 

Mary TudorPermaisuri Raja PrancisPeriode9 Oktober 1514 – 1 Januari 1515Penobatan5 November 1514Kelahiran(1496-03-18)18 Maret 1496Istana Richmond, SurreyKematian25 Juni 1533(1533-06-25) (umur 37)Balai Westhorpe, SuffolkPemakamanGereja Santa Maria, Bury St. EdmundsPasanganLouis XII, Raja PrancisCharles Brandon, Adipati SuffolkKeturunanHenry BrandonFrances GreyEleanor CliffordHenry BrandonWangsaTudorAyahHenry VII, Raja InggrisIbuElizabeth dari YorkAgamaKatolik Roma Mary Tudor (18 Maret 14...

Cet article est une ébauche concernant un lac et la Wallonie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Lac de la Gileppe Lac de la Gileppe depuis le belvédère Administration Pays Belgique Province Liège Géographie Coordonnées 50° 35′ 08″ N, 5° 59′ 24″ E Type lac d'eau douce Superficie 1,3 km2 Longueur 2,5 km Largeur 1 km Altitude 361 m Volu...

 

В Википедии есть статьи о других людях с фамилией Голубничий. Владимир Голубничий Общая информация Полное имя Владимир Степанович Голубничий Дата и место рождения 2 июня 1936(1936-06-02)[1][2]Сумы, Харьковская область, Украинская ССР, СССР Дата и место смерти 16 августа 2021(...