Confidence region

In statistics, a confidence region is a multi-dimensional generalization of a confidence interval. It is a set of points in an n-dimensional space, often represented as an ellipsoid around a point which is an estimated solution to a problem, although other shapes can occur.

Interpretation

The confidence region is calculated in such a way that if a set of measurements were repeated many times and a confidence region calculated in the same way on each set of measurements, then a certain percentage of the time (e.g. 95%) the confidence region would include the point representing the "true" values of the set of variables being estimated. However, unless certain assumptions about prior probabilities are made, it does not mean, when one confidence region has been calculated, that there is a 95% probability that the "true" values lie inside the region, since we do not assume any particular probability distribution of the "true" values and we may or may not have other information about where they are likely to lie.

The case of independent, identically normally-distributed errors

Suppose we have found a solution to the following overdetermined problem:

where Y is an n-dimensional column vector containing observed values of the dependent variable, X is an n-by-p matrix of observed values of independent variables (which can represent a physical model) which is assumed to be known exactly, is a column vector containing the p parameters which are to be estimated, and is an n-dimensional column vector of errors which are assumed to be independently distributed with normal distributions with zero mean and each having the same unknown variance .

A joint 100(1 − α) % confidence region for the elements of is represented by the set of values of the vector b which satisfy the following inequality:[1]

where the variable b represents any point in the confidence region, p is the number of parameters, i.e. number of elements of the vector is the vector of estimated parameters, and s2 is the reduced chi-squared, an unbiased estimate of equal to

Further, F is the quantile function of the F-distribution, with p and degrees of freedom, is the statistical significance level, and the symbol means the transpose of .

The expression can be rewritten as:

where is the least-squares scaled covariance matrix of .

The above inequality defines an ellipsoidal region in the p-dimensional Cartesian parameter space Rp. The centre of the ellipsoid is at the estimate . According to Press et al., it is easier to plot the ellipsoid after doing singular value decomposition. The lengths of the axes of the ellipsoid are proportional to the reciprocals of the values on the diagonals of the diagonal matrix, and the directions of these axes are given by the rows of the 3rd matrix of the decomposition.

Weighted and generalised least squares

Now consider the more general case where some distinct elements of have known nonzero covariance (in other words, the errors in the observations are not independently distributed), and/or the standard deviations of the errors are not all equal. Suppose the covariance matrix of is , where V is an n-by-n nonsingular matrix which was equal to in the more specific case handled in the previous section, (where I is the identity matrix,) but here is allowed to have nonzero off-diagonal elements representing the covariance of pairs of individual observations, as well as not necessarily having all the diagonal elements equal.

It is possible to find[2] a nonsingular symmetric matrix P such that

In effect, P is a square root of the covariance matrix V.

The least-squares problem

can then be transformed by left-multiplying each term by the inverse of P, forming the new problem formulation

where

and

A joint confidence region for the parameters, i.e. for the elements of , is then bounded by the ellipsoid given by:[3]

Here F represents the percentage point of the F-distribution and the quantities p and n-p are the degrees of freedom which are the parameters of this distribution.

Nonlinear problems

Confidence regions can be defined for any probability distribution. The experimenter can choose the significance level and the shape of the region, and then the size of the region is determined by the probability distribution. A natural choice is to use as a boundary a set of points with constant (chi-squared) values.

One approach is to use a linear approximation to the nonlinear model, which may be a close approximation in the vicinity of the solution, and then apply the analysis for a linear problem to find an approximate confidence region. This may be a reasonable approach if the confidence region is not very large and the second derivatives of the model are also not very large.

Bootstrapping approaches can also be used.[4]

See also

Notes

  1. ^ Draper and Smith (1981, p. 94)
  2. ^ Draper and Smith (1981, p. 108)
  3. ^ Draper and Smith (1981, p. 109)
  4. ^ Hutton TJ, Buxton BF, Hammond P, Potts HWW (2003). Estimating average growth trajectories in shape-space using kernel smoothing. IEEE Transactions on Medical Imaging, 22(6):747-53

References

  • Draper, N.R.; H. Smith (1981) [1966]. Applied Regression Analysis (2nd ed.). USA: John Wiley and Sons Ltd. ISBN 0-471-02995-5.
  • Press, W.H.; S.A. Teukolsky; W.T. Vetterling; B.P. Flannery (1992) [1988]. Numerical Recipes in C: The Art of Scientific Computing (2nd ed.). Cambridge UK: Cambridge University Press. ISBN 978-0-521-43720-2.

Read other articles:

Paulinho Paulinho with Brazil in 2018Informasi pribadiNama lengkap José Paulo Bezerra Maciel Júnior[1]Tanggal lahir 25 Juli 1988 (umur 35)[2]Tempat lahir São Paulo, BrazilTinggi 183 m (600 ft 5 in)[3]Posisi bermain MidfielderInformasi klubKlub saat ini CorinthiansNomor 15Karier junior2004–2005 Pão de AçúcarKarier senior*Tahun Tim Tampil (Gol)2006–2010 Pão de Açúcar 39 (7)2006–2007 → Vilnius (loan) 38 (5)2007–2008 → ŁKS Łódź...

 

glutamate—ammonia ligaseActive site between two monomers of glutamine synthetase from Salmonella typhimurium. Cation binding sites are yellow and orange; ADP is pink; phosphinothricin is blue.[1]PengidentifikasiNomor EC6.3.1.2Nomor CAS9023-70-5 Basis dataIntEnztinjauan IntEnzBRENDAentri BRENDAExPASytinjauan NiceZymeKEGGentri KEGGMetaCycjalur metabolikPRIAMprofilStruktur PDBRCSB PDB PDBe PDBsumOntologi GenAmiGO / EGO PencarianPMCartikelPubMedartikelNCBIprotein Glutamine synthetase,b...

 

Reservoir in the San Bernardino Mountains of California, United States Silverwood LakeLooking north, Cedar Springs Dam at top leftSilverwood LakeLocationSan Bernardino County, CaliforniaCoordinates34°18′14″N 117°19′05″W / 34.30389°N 117.31806°W / 34.30389; -117.31806TypeReservoirPrimary inflowsCalifornia Aqueduct and West Fork Mojave River, East Fork of West Fork Mojave River and Sawpit Canyon CreekPrimary outflowsWest Fork Mojave RiverBasin countriesU...

Surah ke-103al-'Asr MasaTeks ArabTerjemahan KemenagKlasifikasiMakkiyahJuzJuz 30Jumlah ruku1 ruku'Jumlah ayat3 ayatJumlah kata14 kataJumlah huruf66 huruf Surah Al-'Asr (Arab: سورة العصرcode: ar is deprecated ) adalah surah ke-103 dari al-Qur'an. Surah ini tergolong surah Makkiyah dan terdiri atas 3 ayat. Kata Al 'Ashr berarti waktu/masa dan diambil dari ayat pertama surat ini. Isi surat mengabarkan bahwa sesungguhnya semua manusia itu berada dalam keadaan merugi kecuali dia termasuk m...

 

Led Zeppelin. Clockwise, from top left: Jimmy Page, John Bonham, Robert Plant, John Paul Jones Led Zeppelin were an English rock band whose career spanned twelve years from 1968 to 1980. They are considered one of the most successful, innovative, and influential rock groups in history. During the band's tenure and in the years since they disbanded, many artists have recorded and released cover versions of their songs. These include complete tribute albums, live versions, as well as versions ...

 

Not to be confused with Vastral metro station. Ahmedabad Metro's Blue Line terminal metro station Vastral GamAhmedabad Metro stationGeneral informationLocationVastral, Ahmedabad, Gujarat 382418Coordinates22°59′50″N 72°40′04″E / 22.99724°N 72.66766°E / 22.99724; 72.66766Owned byGujarat Metro Rail Corporation LimitedOperated byAhmedabad MetroLine(s)Blue LinePlatformsSide platformPlatform-1 → Train Terminates HerePlatform-2 → ThaltejTracks2ConstructionStru...

Halaman ini berisi artikel tentang universitas di Ohio. Untuk universitas di Florida, lihat Universitas Miami. Universitas Miamibahasa Latin: Universitas MiamiensisMotoProdesse Quam Conspici (Latin)Moto dalam bahasa InggrisTo accomplish without being conspicuous[1]JenisUniversitas penelitian negeriDidirikan2 Februari 1809; 215 tahun lalu (1809-02-02)Lembaga indukSistem Universitas OhioAfiliasi akademikGC3Program antariksaDana abadi$686 juta (2022)[2]PresidenGrego...

 

VandeuilcomuneVandeuil – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Marna ArrondissementReims CantoneFismes-Montagne de Reims TerritorioCoordinate49°17′N 3°47′E / 49.283333°N 3.783333°E49.283333; 3.783333 (Vandeuil)Coordinate: 49°17′N 3°47′E / 49.283333°N 3.783333°E49.283333; 3.783333 (Vandeuil) Superficie5,37 km² Abitanti201[1] (2009) Densità37,43 ab./km² Altre informazioniCod. postale51140 ...

 

B.26 Botha Blackburn B.26 Botha Role Torpedo bomberType of aircraft Manufacturer Blackburn Aircraft First flight 28 December 1938 Introduction 12 December 1939 Retired September 1944 Primary user Royal Air Force Number built 580 The Blackburn B.26 Botha was a four-seat reconnaissance and torpedo bomber. It was produced by the British aviation company Blackburn Aircraft at its factories at Brough and Dumbarton. The Botha was developed during the mid 1930s in response to Air Ministry Spec...

此條目可参照英語維基百科相應條目来扩充。 (2022年1月31日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 艾哈迈德·哈桑·贝克尔أحمد حسن البكر第4任伊拉克总统任期1968年7月17日—1979年7月16日副总统萨达姆·侯...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

مشروع مانهاتن كان اختبار ترينيتي أول عملية تفجير لسلاح نووي. الدولة  الولايات المتحدة  المملكة المتحدة كندا الإنشاء 1942-1946 الانحلال 15 أغسطس 1947 جزء من فيلق القوات البرية الأمريكي الهندسي المقر الرئيسي أوك ريدج، تينيسي، الولايات المتحدة الذكرى السنوية 13 أغسطس 1942 الاشت�...

 本表是動態列表,或許永遠不會完結。歡迎您參考可靠來源來查漏補缺。 潛伏於中華民國國軍中的中共間諜列表收錄根據公開資料來源,曾潛伏於中華民國國軍、被中國共產黨聲稱或承認,或者遭中華民國政府調查審判,為中華人民共和國和中國人民解放軍進行間諜行為的人物。以下列表以現今可查知時間為準,正確的間諜活動或洩漏機密時間可能早於或晚於以下所歸�...

 

For the album by Goodbye June, see Magic Valley (album). For the 2011 American drama film, see Magic Valley (film). Region in Idaho, United StatesMagic ValleyRegionPerrine Bridge spanning the Snake River Canyon at Twin Falls.Map of Idaho highlighting counties in the Magic Valley region.Country United StatesState IdahoLargest cityTwin Falls (pop.: 44,125)Population (2010) • Total185,790Time zoneUTC−7 (Mountain) • Summer (DST)UTC−6 (MDT)Area co...

 

National handball team FranceInformationNicknameLes Bleues (The Blues)AssociationFrench Handball FederationCoachOlivier KrumbholzAssistant coachSébastien GardillouCaptainEstelle Nze MinkoMost capsIsabelle Wendling (338)Most goalsVéronique Pecqueux-Rolland (898)Colours 1st 2nd ResultsSummer OlympicsAppearances5 (First in 2000)Best result 1st (2020)World ChampionshipAppearances16 (First in 1986)Best result 1st (2003, 2017, 2023)European ChampionshipAppearances12 (First in 2000)Best result 1s...

Language family of northern Australia JarrakanDjeraganGeographicdistributionfrom Halls Creek to Wyndham and Kununurra along the Ord River in the eastern Kimberley regionLinguistic classificationOne of the world's primary language familiesSubdivisions Kija Miriwoongic Glottologjarr1235Jarrakan languages (purple), among other non-Pama-Nyungan languages (grey) The Jarrakan (formerly Djeragan) languages are a small family of Australian Aboriginal languages spoken in northern Australia. The name i...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ديسمبر 2015) {{{الاسم}}} وحدة المعالجة المركزية فينوم II (بالإنجليزية: Phenom II)‏ هي عائلة مكونة من معالجات إي إم دي AMD متعددة النواة 45 نانومتر باستخدام معالج AMD K10 ، خلفًا لإي أم...

 

Мартін Генріх Клапротнім. Martin Heinrich KlaprothНародився1 грудня 1743(1743-12-01)ВерніґеродеПомер1 січня 1817(1817-01-01) (73 роки)БерлінПохованняДоротеенштадтський цвинтарdКраїна Королівство ПруссіяДіяльністьхімік, фармацевт, викладач університету, мінералог, науковець, вина�...

VfB StoccardaCalcio Die Schwaben (gli Svevi), Die Roten (i Rossi) Segni distintiviUniformi di gara Casa Trasferta Terza divisa Colori sociali Bianco, rosso InnoHey Hey VfB Dati societariCittà Stoccarda Nazione Germania ConfederazioneUEFA Federazione DFB CampionatoBundesliga Fondazione1893 Presidente Claus Vogt Allenatore Sebastian Hoeneß StadioMHPArena(60.441 posti) Sito webwww.vfb.de Palmarès Titoli di Germania5 Titoli nazionali2 Zweite Bundesliga Trofei nazionali3 Coppe di Germania1...

 

Series of two paintings by Vincent van Gogh Portrait of Dr. Gachet1st versionArtistVincent van GoghYear1890Catalogue F753 JH2007 MediumOil on canvasDimensions67 cm × 56 cm (23.4 in × 22.0 in)LocationPrivate collection Portrait of Dr. Gachet2nd versionArtistVincent van GoghYear1890Catalogue F754 JH2014 MediumOil on canvasDimensions67 cm × 56 cm (23.4 in × 22.0 in)LocationMusée d'Orsay, Paris Portrait of Dr...