Concrete hinges are hinges produced out of concrete, with little or no steel in the hinge neck, which allows a rotation without a significant bending moment.[1] The high rotations[2][3] result from controlled tensile cracks as well as creep.[4][3][1] Concrete hinges are mostly used in bridge
engineering[1] as monolithic, simple, economic alternative to steel hinges, which would need regular maintenance. Concrete hinges are also used in tunnel engineering.[1][3] A concrete hinge consist of the hinge neck, which has a reduced cross section and of the hinge heads, which have a strong reinforcement.[3][1][5]
History and guidelines
Freyssinet[6][7] invented the concrete hinges.[1][3]Leonhardt introduced guidelines in the 1960s which are still used till the 2010s.[1][3]
Janßen introduced the application of concrete hinges in tunnel engineering.[8][3]
Gladwell developed another guideline for narrowing cross sections, which predicts a stiffer behaviour than the Leonhardt/Janßen-model[3]
Marx and Schacht translated Leonhardts guidelines for the first time in the nowadays used semipropablistic safteyconcept.
Schlappal,[3] Kalliauer[1] and coworkers introduced for the first time both limit caces (service-limit-states (SLS) and ultimate-limite-states (ULS)).
Kaufmann, Markić und Bimschas did further studies on concrete hinges.[9]
Stresses, rotational capacity, bearing capacity
Due to triaxial compression, strength in the neck region is much higher than for uniaxial compression,[4] because lateral expansion is restricted.[1]Eurocode 2 suggests for typical dimensions a compressive strength equal to about twice of the unixalial compressive strength.[1]
Also the concrete hinge neck has no, or almost no reinforcement,[1] but the concrete hinge heads need a dense reinforcement cache, because of tensile splitting.[10][9]
Literature
Fritz Leonhardt: Vorlesungen über Massivbau - Teil 2 Sonderfälle der Bemessung im Stahlbetonbau. [Concrete hinges: test report, recommendations for structural design. Critical stress states of concrete under multiaxial static short-term loading Springer-Verlag, Berlin 1986, ISBN3-540-16746-3, S. 123–132. (in German)
VPI: Der Prüfingenieur. Ausgabe April 2010, S. 15–26, (bvpi.de PDF; 2,3 MB). (in German)
^
Schlappal et al. did experiments till above 50mrad (Fig11).
^ abcdefghi
Thomas Schlappal; Michael Schweigler; Susanne Gmainer; Martin Peyerl; Bernhard Pichler (2017), "Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments", Materials and Structures, vol. 50, no. 6, Springer, p. 244, doi:10.1617/s11527-017-1112-9, PMC5700241, PMID29213209
^ ab
Johannes Kalliauer; Thomas Schlappal; Herbert A. Mang; Bernhard Pichler (2018). "Parameter identification as the basis for Finite Element simulations of Ultimate Limit States of concrete hinges". In Günther Meschke; Bernhard Pichler; Jan G. Rots (eds.). Computational Modelling of Concrete Structures: Proceedings of the Conference on Computational Modelling of Concrete and Concrete Structures (EURO-C 2018), February 26 – March 1, 2018, Bad Hofgastein, Austria. CRC Press. p. 689. Retrieved 2018-03-06.
^Fritz Leonhardt; Horst Reimann (1965), Betongelenke: Versuchsbericht; Vorschläge zur Bemessung und konstruktiven Ausbildung. Kritische Spannungszustände des Betons bei mehrachsiger, ruhender Kurzzeitbelastung (in German), Ernst
^Eugène Freyssinet (1923), "Le pont de Candelier (The bridge of Candelier)", Ann Ponts Chaussées (in French), vol. 1, pp. 165f
^Eugène Freyssinet (1954), "Naissance du béton précontraint et vues d'avenir.", Travaux, Juni (in French), pp. 463–474
^
Pieter Janßen (1983), Tragverhalten von Tunnelausbauten mit Gelenktübbings (in German), Dissertation, Technische Universität Braunschweig
^
Johannes Kalliauer (2016-04-29), Insight into the structural behavior of concrete hinges by means of Finite Element simulations, Wien: TU Wien - Vienna University of Technology