Complex random variable

In probability theory and statistics, complex random variables are a generalization of real-valued random variables to complex numbers, i.e. the possible values a complex random variable may take are complex numbers.[1] Complex random variables can always be considered as pairs of real random variables: their real and imaginary parts. Therefore, the distribution of one complex random variable may be interpreted as the joint distribution of two real random variables.

Some concepts of real random variables have a straightforward generalization to complex random variables—e.g., the definition of the mean of a complex random variable. Other concepts are unique to complex random variables.

Applications of complex random variables are found in digital signal processing,[2] quadrature amplitude modulation and information theory.

Definition

A complex random variable on the probability space is a function such that both its real part and its imaginary part are real random variables on .

Examples

Simple example

Consider a random variable that may take only the three complex values with probabilities as specified in the table. This is a simple example of a complex random variable.

Probability Value

The expectation of this random variable may be simply calculated:

Uniform distribution

Another example of a complex random variable is the uniform distribution over the filled unit circle, i.e. the set . This random variable is an example of a complex random variable for which the probability density function is defined. The density function is shown as the yellow disk and dark blue base in the following figure.

Probability density function of a complex random variable shich is uniformly distributed inside the unit circle

Complex normal distribution

Complex Gaussian random variables are often encountered in applications. They are a straightforward generalization of real Gaussian random variables. The following plot shows an example of the distribution of such a variable.

Probability density function of a complex Gaussian random variable

Cumulative distribution function

The generalization of the cumulative distribution function from real to complex random variables is not obvious because expressions of the form make no sense. However expressions of the form make sense. Therefore, we define the cumulative distribution of a complex random variables via the joint distribution of their real and imaginary parts:

(Eq.1)

Probability density function

The probability density function of a complex random variable is defined as , i.e. the value of the density function at a point is defined to be equal to the value of the joint density of the real and imaginary parts of the random variable evaluated at the point .

An equivalent definition is given by where and .

As in the real case the density function may not exist.

Expectation

The expectation of a complex random variable is defined based on the definition of the expectation of a real random variable:[3]: p. 112 

(Eq.2)

Note that the expectation of a complex random variable does not exist if or does not exist.

If the complex random variable has a probability density function , then the expectation is given by .

If the complex random variable has a probability mass function , then the expectation is given by .

Properties

Whenever the expectation of a complex random variable exists, taking the expectation and complex conjugation commute:

The expected value operator is linear in the sense that

for any complex coefficients even if and are not independent.

Variance and pseudo-variance

The variance is defined in terms of absolute squares as:[3]: 117 

(Eq.3)
Properties

The variance is always a nonnegative real number. It is equal to the sum of the variances of the real and imaginary part of the complex random variable:

The variance of a linear combination of complex random variables may be calculated using the following formula:

Pseudo-variance

The pseudo-variance is a special case of the pseudo-covariance and is defined in terms of ordinary complex squares, given by:

(Eq.4)

Unlike the variance of , which is always real and positive, the pseudo-variance of is in general complex.

Covariance matrix of real and imaginary parts

For a general complex random variable, the pair has a covariance matrix of the form:

The matrix is symmetric, so

Its elements equal:

Conversely:

Covariance and pseudo-covariance

The covariance between two complex random variables is defined as[3]: 119 

(Eq.5)

Notice the complex conjugation of the second factor in the definition.

In contrast to real random variables, we also define a pseudo-covariance (also called complementary variance):

(Eq.6)

The second order statistics are fully characterized by the covariance and the pseudo-covariance.

Properties

The covariance has the following properties:

  • (Conjugate symmetry)
  • (Sesquilinearity)
  • Uncorrelatedness: two complex random variables and are called uncorrelated if (see also: uncorrelatedness (probability theory)).
  • Orthogonality: two complex random variables and are called orthogonal if .

Circular symmetry

Circular symmetry of complex random variables is a common assumption used in the field of wireless communication. A typical example of a circular symmetric complex random variable is the complex Gaussian random variable with zero mean and zero pseudo-covariance matrix.

A complex random variable is circularly symmetric if, for any deterministic , the distribution of equals the distribution of .

Properties

By definition, a circularly symmetric complex random variable has for any .

Thus the expectation of a circularly symmetric complex random variable can only be either zero or undefined.

Additionally, for any .

Thus the pseudo-variance of a circularly symmetric complex random variable can only be zero.

If and have the same distribution, the phase of must be uniformly distributed over and independent of the amplitude of .[4]

Proper complex random variables

The concept of proper random variables is unique to complex random variables, and has no correspondent concept with real random variables.

A complex random variable is called proper if the following three conditions are all satisfied:

This definition is equivalent to the following conditions. This means that a complex random variable is proper if, and only if:

Theorem — Every circularly symmetric complex random variable with finite variance is proper.

For a proper complex random variable, the covariance matrix of the pair has the following simple form:

.

I.e.:

Cauchy-Schwarz inequality

The Cauchy-Schwarz inequality for complex random variables, which can be derived using the Triangle inequality and Hölder's inequality, is

.

Characteristic function

The characteristic function of a complex random variable is a function defined by

See also

References

  1. ^ Eriksson, Jan; Ollila, Esa; Koivunen, Visa (2009). Statistics for complex random variables revisited. 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei, Taiwan: Institute of Electrical and Electronics Engineers. pp. 3565–3568. doi:10.1109/ICASSP.2009.4960396.
  2. ^ Lapidoth, A. (2009). A Foundation in Digital Communication. Cambridge University Press. ISBN 9780521193955.
  3. ^ a b c Park,Kun Il (2018). Fundamentals of Probability and Stochastic Processes with Applications to Communications. Springer. ISBN 978-3-319-68074-3.
  4. ^ Peter J. Schreier, Louis L. Scharf (2011). Statistical Signal Processing of Complex-Valued Data. Cambridge University Press. ISBN 9780511815911.

Read other articles:

Pour un article plus général, voir Structure interne de la Terre. Cet article est une ébauche concernant la géologie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (janvier 2021). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qua...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Isabelle Berro-Lefèvre Hakim Mahkamah Eropa untuk Hak Asasi ManusiaMasa jabatan27 Juni 2006 – 1 Agustus 2015 Sunting kotak info • L • B Isabelle Berro-Lefèvre adalah seorang yuris (ahli hukum) asal Monako yang dikenal akan k...

 

 

Reaktor nuklir alam di Oklo: (1) Daerah reaktor nuklir. (2) Batu pasir. (3) Lapisan bijih uranium. (4) Granit. Oklo adalah sebuah daerah dekat kota Franceville, di provinsi Haut-Ogooué, negara Gabon, yang terletak di Afrika Tengah. Beberapa reaktor nuklir alam ditemukan dalam daerah pertambangan uranium pada tahun 1972. Sejarah Gabon merupakan koloni Prancis ketika para prospektor dari komisariat energi nuklir Prancis (bagian industri, kemudian menjadi COGEMA dan terakhir sebagai Areva NC) m...

Historic building in Houston, Texas, U.S. United States historic placeHogg BuildingU.S. National Register of Historic PlacesRecorded Texas Historic Landmark The building's exterior in 2011Show map of Houston DowntownShow map of TexasShow map of the United StatesLocation401 Louisiana Street, Houston, TexasCoordinates29°45′45″N 95°21′50″W / 29.76250°N 95.36389°W / 29.76250; -95.36389Arealess than one acreBuilt1921 (1921)ArchitectBarglebaugh & Whitson...

 

 

Sumber referensi dari artikel ini belum dipastikan dan mungkin isinya tidak benar. Mohon periksa, kembangkan artikel ini, dan tambahkan sumber yang benar pada bagian yang diperlukan. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari s...

 

 

العلاقات البحرينية الفانواتية البحرين فانواتو   البحرين   فانواتو تعديل مصدري - تعديل   العلاقات البحرينية الفانواتية هي العلاقات الثنائية التي تجمع بين البحرين وفانواتو.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ...

The bishop-fish, from Poland in the 16th century Lists of humanoids cover humanoids, imaginary species similar to humans. They are organized by type (avian, piscine and amphibian, reptilian, and extraterrestrial), and by medium (literature, comics, animation, television, film and video games). By type List of avian humanoids List of piscine and amphibian humanoids List of reptilian humanoids List of humanoid aliens Little people (mythology) By medium List of fictional humanoid species in lit...

 

 

ShkharaTitik tertinggiKetinggian5.203 m (17.070 ft)[1][2]Puncak1.357 m (4.452 ft)Masuk dalam daftarTujuh Puncak KetigaTitik tertinggi negaraKoordinat43°00′02″N 43°06′44″E / 43.00056°N 43.11222°E / 43.00056; 43.11222Koordinat: 43°00′02″N 43°06′44″E / 43.00056°N 43.11222°E / 43.00056; 43.11222 GeografiShkharaLokasi Shkhara di pegunungan KaukasusLetakShkhara, Svaneti, GeorgiaNegaraGe...

 

 

ロバート・デ・ニーロRobert De Niro 2011年のデ・ニーロ生年月日 (1943-08-17) 1943年8月17日(80歳)出生地 アメリカ合衆国・ニューヨーク州ニューヨーク市身長 177 cm職業 俳優、映画監督、映画プロデューサージャンル 映画、テレビドラマ活動期間 1963年 -配偶者 ダイアン・アボット(1976年 - 1988年)グレイス・ハイタワー(1997年 - )主な作品 『ミーン・ストリート』(1973年)...

American restaurant chain This article is about the American restaurant chain. For other uses, see Waffle House (disambiguation). Waffle HouseTrade nameWaffle HouseCompany typePrivateIndustryRestaurantsGenreCasual diningFoundedSeptember 5, 1955; 68 years ago (1955-09-05)Avondale Estates, Georgia, United StatesFoundersJoe RogersTom ForknerHeadquarters5986 Financial Drive, Norcross, Georgia, United StatesNumber of locations1,973[1]Area served25 U.S. statesKey peopleWal...

 

 

Town in New Hampshire, United States Town in New Hampshire, United StatesCanterbury, New HampshireTownTown center: Canterbury United Community Church (L) & Country Store (R) SealLocation in Merrimack County and the state of New HampshireCoordinates: 43°20′11″N 71°33′53″W / 43.33639°N 71.56472°W / 43.33639; -71.56472CountryUnited StatesStateNew HampshireCountyMerrimackIncorporated1741VillagesCanterburyCanterbury StationShaker VillageGovernment ...

 

 

Сибирский горный козёл Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКла�...

Association football club in England Football clubBrantham AthleticFull nameBrantham Athletic Football ClubNickname(s)The Blue ImpsFounded1887GroundBrantham Leisure Centre, BranthamCapacity1,200 (200 seated)[1]ChairmanPeter CrowhurstManagerPip BoylandLeagueEastern Counties League Premier Division2022–23Eastern Counties League Premier Division, 13th of 20WebsiteClub website Home colours Away colours Brantham's home ground Brantham Athletic Football Club is a football club based in Br...

 

 

Fourth Division 1961-1962 Competizione Fourth Division Sport Calcio Edizione 4ª Organizzatore Football League Date dal 19 agosto 1961al 3 maggio 1962 Luogo  Inghilterra Galles Partecipanti 24 Formula girone all'italiana A/R Risultati Vincitore Millwall(1º titolo) Altre promozioni Carlisle UnitedColchester UnitedWrexham Statistiche Miglior marcatore Bobby Hunt (37) Incontri disputati 506 Gol segnati 1 690 (3,34 per incontro) Cronologia della competizione 196...

 

 

Mercedes-Benz W114/W1151973 Mercedes-Benz 220DInformasiProdusenMercedes-BenzJuga disebutMercedes-Benz Strich-Acht (Jerman)Mercy Mini (Indonesia)Masa produksi1968–19761,919,056 unitSedan: 1,852,008Coupé: 67,048PerakitanStuttgart, Jerman BaratBremen, Jerman BaratSindelfingen, Jerman BaratEast London, Afrika SelatanSetúbal, Portugal (Movauto)Barcelona, Venezuela (CKD)González Catán, ArgentinaPerancangPaul BracqBodi & rangkaKelasmobil Eksekutif (E)Grand tourer (W114/W115 Coupé...

Legendary creature in Danish, Frisian and German mythology Nis Puk in the legendary forest on Sylt Statue of Nis Puk in Neukirchen/Nykirke The Nis Puk[1] (sometimes also Niß Puk,[2] in Danish also Nis Pug(e)[3]) is a legendary creature, a kind of Kobold, from Danish-[1][4][5], Low German-[6] and North Frisian-speaking[7] areas of Northern Germany[6] and Southern Denmark,[8] among them Schleswig, today divided int...

 

 

Defunct flying squadron of the Royal Air Force No. 543 Squadron RAFSquadron badgeActive19 October 1942 – 18 October 1943 24 September 1955 – 24 May 1974Country United KingdomBranch Royal Air ForceRolePhotographic ReconnaissancePart ofNo. 16 Group, RAF Coastal Command (42–43)[1] No. 3 Group, RAF Bomber Command (55–68)[2] No. 1 Group, RAF Strike Command (68–74)[3]Motto(s)Valiant and Vigilant[4][5]InsigniaSquadron Badge heraldryA crane's hea...

 

 

2017 South American Youth Football ChampionshipCampeonato Sudamericano Sub-20“Juventud de America” Ecuador 2017Tournament detailsHost countryEcuadorDates18 January – 11 FebruaryTeams10 (from 1 confederation)Venue(s)4 (in 4 host cities)Final positionsChampions Uruguay (8th title)Runners-up EcuadorThird place VenezuelaFourth place ArgentinaTournament statisticsMatches played35Goals scored91 (2.6 per match)Top scorer(s) Rodrigo Amaral Bryan Cabezas L...

English footballer Lewis Dobbin Dobbin playing for England U17 in 2019Personal informationFull name Lewis Norman DobbinDate of birth (2003-01-03) 3 January 2003 (age 21)[1]Place of birth Stoke-on-Trent, EnglandHeight 1.75 m (5 ft 9 in)[1]Position(s) WingerTeam informationCurrent team Aston VillaYouth career2014−2021 EvertonSenior career*Years Team Apps (Gls)2021–2024 Everton 15 (1)2022–2023 → Derby County (loan) 43 (3)2024– Aston Villa 0 (0)Intern...

 

 

Czech composer (1841–1904) Antonín DvořákDvořák in 1882Born(1841-09-08)8 September 1841Nelahozeves, Austrian EmpireDied1 May 1904(1904-05-01) (aged 62)Vysoká u Příbramě, Austria-HungaryWorksList of compositions by Antonín Dvořák Antonín Leopold Dvořák (/d(ə)ˈvɔːrʒɑːk, -ʒæk/ d(ə-)VOR-zha(h)k; Czech: [ˈantoɲiːn ˈlɛopold ˈdvor̝aːk] ⓘ; 8 September 1841 – 1 May 1904) was a Czech composer. He frequently employed rhythms and other aspects of the fo...