Cauchy product

In mathematics, more specifically in mathematical analysis, the Cauchy product is the discrete convolution of two infinite series. It is named after the French mathematician Augustin-Louis Cauchy.

Definitions

The Cauchy product may apply to infinite series[1][2] or power series.[3][4] When people apply it to finite sequences[5] or finite series, that can be seen merely as a particular case of a product of series with a finite number of non-zero coefficients (see discrete convolution).

Convergence issues are discussed in the next section.

Cauchy product of two infinite series

Let and be two infinite series with complex terms. The Cauchy product of these two infinite series is defined by a discrete convolution as follows:

    where     .

Cauchy product of two power series

Consider the following two power series

    and    

with complex coefficients and . The Cauchy product of these two power series is defined by a discrete convolution as follows:

    where     .

Convergence and Mertens' theorem

Let (an)n≥0 and (bn)n≥0 be real or complex sequences. It was proved by Franz Mertens that, if the series converges to A and converges to B, and at least one of them converges absolutely, then their Cauchy product converges to AB.[6] The theorem is still valid in a Banach algebra (see first line of the following proof).

It is not sufficient for both series to be convergent; if both sequences are conditionally convergent, the Cauchy product does not have to converge towards the product of the two series, as the following example shows:

Example

Consider the two alternating series with

which are only conditionally convergent (the divergence of the series of the absolute values follows from the direct comparison test and the divergence of the harmonic series). The terms of their Cauchy product are given by

for every integer n ≥ 0. Since for every k ∈ {0, 1, ..., n} we have the inequalities k + 1 ≤ n + 1 and nk + 1 ≤ n + 1, it follows for the square root in the denominator that (k + 1)(nk + 1)n +1, hence, because there are n + 1 summands,

for every integer n ≥ 0. Therefore, cn does not converge to zero as n → ∞, hence the series of the (cn)n≥0 diverges by the term test.

Proof of Mertens' theorem

For simplicity, we will prove it for complex numbers. However, the proof we are about to give is formally identical for an arbitrary Banach algebra (not even commutativity or associativity is required).

Assume without loss of generality that the series converges absolutely. Define the partial sums

with

Then

by rearrangement, hence

(1)

Fix ε > 0. Since by absolute convergence, and since Bn converges to B as n → ∞, there exists an integer N such that, for all integers nN,

(2)

(this is the only place where the absolute convergence is used). Since the series of the (an)n≥0 converges, the individual an must converge to 0 by the term test. Hence there exists an integer M such that, for all integers nM,

(3)

Also, since An converges to A as n → ∞, there exists an integer L such that, for all integers nL,

(4)

Then, for all integers n ≥ max{L, M + N}, use the representation (1) for Cn, split the sum in two parts, use the triangle inequality for the absolute value, and finally use the three estimates (2), (3) and (4) to show that

By the definition of convergence of a series, CnAB as required.

Cesàro's theorem

In cases where the two sequences are convergent but not absolutely convergent, the Cauchy product is still Cesàro summable.[7] Specifically:

If , are real sequences with and then

This can be generalised to the case where the two sequences are not convergent but just Cesàro summable:

Theorem

For and , suppose the sequence is summable with sum A and is summable with sum B. Then their Cauchy product is summable with sum AB.

Examples

  • For some , let and . Then by definition and the binomial formula. Since, formally, and , we have shown that . Since the limit of the Cauchy product of two absolutely convergent series is equal to the product of the limits of those series, we have proven the formula for all .
  • As a second example, let for all . Then for all so the Cauchy product does not converge.

Generalizations

All of the foregoing applies to sequences in (complex numbers). The Cauchy product can be defined for series in the spaces (Euclidean spaces) where multiplication is the inner product. In this case, we have the result that if two series converge absolutely then their Cauchy product converges absolutely to the inner product of the limits.

Products of finitely many infinite series

Let such that (actually the following is also true for but the statement becomes trivial in that case) and let be infinite series with complex coefficients, from which all except the th one converge absolutely, and the th one converges. Then the limit exists and we have:

Proof

Because the statement can be proven by induction over : The case for is identical to the claim about the Cauchy product. This is our induction base.

The induction step goes as follows: Let the claim be true for an such that , and let be infinite series with complex coefficients, from which all except the th one converge absolutely, and the -th one converges. We first apply the induction hypothesis to the series . We obtain that the series converges, and hence, by the triangle inequality and the sandwich criterion, the series converges, and hence the series converges absolutely. Therefore, by the induction hypothesis, by what Mertens proved, and by renaming of variables, we have: Therefore, the formula also holds for .

Relation to convolution of functions

A finite sequence can be viewed as an infinite sequence with only finitely many nonzero terms, or in other words as a function with finite support. For any complex-valued functions f, g on with finite support, one can take their convolution: Then is the same thing as the Cauchy product of and .

More generally, given a monoid S, one can form the semigroup algebra of S, with the multiplication given by convolution. If one takes, for example, , then the multiplication on is a generalization of the Cauchy product to higher dimension.

Notes

  1. ^ Canuto & Tabacco 2015, p. 20.
  2. ^ Bloch 2011, p. 463.
  3. ^ Canuto & Tabacco 2015, p. 53.
  4. ^ Mathonline, Cauchy Product of Power Series.
  5. ^ Weisstein, Cauchy Product.
  6. ^ Rudin, Walter (1976). Principles of Mathematical Analysis. McGraw-Hill. p. 74.
  7. ^ Hardy, Godfrey H. (2000). Divergent series (2. , (textually unaltered) ed., repr ed.). Providence, RI: AMS Chelsea Publ. ISBN 978-0-8218-2649-2.

References

  • Canuto, Claudio; Tabacco, Anita (2015), Mathematical Analysis II (2nd ed.), Springer.
  • Ghorpade, Sudhir R.; Limaye, Balmohan V. (2006), A Course in Calculus and Real Analysis, Springer.
  • Hijab, Omar (2011), Introduction to Calculus and Classical Analysis (3rd ed.), Springer.
  • Montesinos, Vicente; Zizler, Peter; Zizler, Václav (2015), An Introduction to Modern Analysis, Springer.
  • Oberguggenberger, Michael; Ostermann, Alexander (2011), Analysis for Computer Scientists, Springer.
  • Pugh, Charles C. (2015), Real Mathematical Analysis (2nd ed.), Springer.
  • Sohrab, Houshang H. (2014), Basic Real Analysis (2nd ed.), Birkhäuser.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Channel WDiluncurkan3 Januari 2018; 6 tahun lalu (2018-01-03)PemilikOnline Dynamics (M) Sdn. Bhd.Negara MalaysiaKantor pusatDamansara Perdana, Petaling Jaya, Selangor[1]Situs webchannelw.myChannel W adalah saluran televisi Malaysia yang me...

 

Casey at the BatSutradaraLloyd IngrahamDitulis olehWilliam E. Wing (skenario)BerdasarkanCasey at the Batoleh Ernest Thayer, 1888PemeranDeWolf HopperPerusahaanproduksiFine Arts Studios, sebuah cabang dari Triangle Film CorporationDistributorTriangle Film CorporationTanggal rilis 2 Juli 1916 (1916-07-02) Durasi5 rol (55-65 menit)[1]NegaraAmerika SerikatBahasaBisu (intertitel Inggris) Casey at the Bat adalah sebuah film bisu Amerika Serikat tahun 1916 yang telah hilang. Film tersebu...

 

Bagian dari sebuah serial tentang IslamSufisme dan Tarekat Gagasan Abdal Ahwal Baqa Dzauq Fakir Fana Hakikat Ihsan Insan Kamil Karamah Kasyf Lataif Manzilah Makrifat Nafs Nur Iman Qutb Silsilah Salik Tazkiyatun-nafs Wali Praktik Zikir Hadrah Muraqabah Sama' Tarekat Islam Akbariyah Ba 'Alawiyah Chishti Haqqani Anjuman Idrisiyah Jahriyah Khalwatiyah Kubrawiyah Maulawiyah Muridiyah Naqsyabandiyah Ni'matullāhī Qadiriyah Qadiriyah-Naqsabandiyah Qudusiyah Rahmaniyah Rifa'iyah Safawiyah Samaniyah ...

كوجي سوزوكي (باليابانية: 鈴木孝司)‏  معلومات شخصية الميلاد 25 يوليو 1989 (العمر 34 سنة)كاناغاوا  الطول 1.78 م (5 قدم 10 بوصة) مركز اللعب مهاجم الجنسية اليابان  المدرسة الأم جامعة هوساي  معلومات النادي النادي الحالي آلبيركس نيغاتا الرقم 9 مسيرة الشباب سنوات فريق 2008–2...

 

Terdapat delapan ibu kota di Australia, kesemuanya berfungsi di tingkat sub-nasional level. Canberra juga berperan sebagai ibu kota negara. Melbourne pernah menjadi ibu kota negara sejak Federasi Australia tahun 1901 hingga 1927, ketika kedudukan pemerintah negara dipindahkan ke kota baru Canberra. Di setiap ibu kota, tugas lembaga yudisial, administratif dan legislatif lokal dilaksanakan untuk yurisdiksi. Mengenai ibu kota negara bagian dan teritori, kesemuanya juga merupakan kota terpadat d...

 

قرية نوندا الإحداثيات 42°34′50″N 77°56′18″W / 42.5806°N 77.9383°W / 42.5806; -77.9383   تقسيم إداري  البلد الولايات المتحدة[1]  التقسيم الأعلى مقاطعة ليفينغستون  خصائص جغرافية  المساحة 2.528631 كيلومتر مربع2.572955 كيلومتر مربع (1 أبريل 2010)  ارتفاع 287 متر  عدد السكان ...

Election 1853 Vermont gubernatorial election ← 1852 September 6, 1853 (1853-09-06) 1854 →   Nominee John S. Robinson Erastus Fairbanks Lawrence Brainerd Party Democratic Whig Free Soil Electoral vote 120 104 7 Popular vote 18,142 20,849 8,291 Percentage 38.5% 43.9% 17.6% Governor before election Erastus Fairbanks Whig Elected Governor John S. Robinson Democratic Elections in Vermont Federal government Presidential elections 1792 1796 1800 18...

 

Untuk kegunaan lain, lihat Lembayung (disambiguasi). Lembayung Phlox subulata     Koordinat warnaTriplet hex#6A0DADsRGBB    (r, g, b)(106, 13, 173)CMYKH   (c, m, y, k)(39, 92, 0, 32)HSV       (h, s, v)(275°, 92%, 68%)SumberWarna webB: Dinormalkan ke [0–255] (bita)H: Dinormalkan ke [0–100] (ratusan) Lembayung adalah jenis warna antara ungu dan patma. Lembayung dalam bahasa Inggris dinamakan purple dan berasal dari bahasa Latin purpura. Liha...

 

جامعة جرايسلاند معلومات التأسيس 1895  الموقع الجغرافي إحداثيات 40°36′58″N 93°55′33″W / 40.616°N 93.9258°W / 40.616; -93.9258   الرمز البريدي 50140[1]  المكان لاموني  البلد الولايات المتحدة  إحصاءات عدد الطلاب 1517 (سبتمبر 2020)[1]  عدد الموظفين 324 (سبتمبر 2020)[1]  �...

First operational version of the U.S. Atlas missile This rocket article contains payload capacity, but does not include orbital altitude or inclination, which greatly affects the capacity. Please help improve this article by adding the orbital altitude and inclination for the given payload. (Learn how and when to remove this message) Atlas D (SM-65D)564th Strategic Missile Squadron Convair SM-65D Atlas missile 58-220, pad 564-A2, Warren I site, F. E. Warren AFB, WyomingFunctionICBMExpendable ...

 

  「俄亥俄」重定向至此。关于其他用法,请见「俄亥俄 (消歧义)」。 俄亥俄州 美國联邦州State of Ohio 州旗州徽綽號:七葉果之州地图中高亮部分为俄亥俄州坐标:38°27'N-41°58'N, 80°32'W-84°49'W国家 美國加入聯邦1803年3月1日,在1953年8月7日追溯頒定(第17个加入联邦)首府哥倫布(及最大城市)政府 • 州长(英语:List of Governors of {{{Name}}}]]) •&...

 

Roger WaldenArchbishop of CanterburyAppointed8 November 1397InstalledunknownTerm ended19 October 1399PredecessorThomas ArundelSuccessorThomas ArundelOrdersConsecrationnever consecratedPersonal detailsDied6 January 1406DenominationRoman Catholic Roger Walden (died 1406) was an English treasurer and Bishop of London. Life Little is now known of Walden's birth nor of his early years. He had some connection with the Channel Islands, and resided for some time in Jersey where he was rector of the P...

Arca BhairawaArca Bhairawa yang diduga perwujudan Adityawarman, salah satu koleksi penting Museum Nasional, JakartaBahan bakuBatuUkuranTinggi 4,41 meter, berat 4 ton.[1]DibuatKurun 1347–1375, paruh kedua abad ke-14DitemukanKompleks percandian Padang Roco, Dharmasraya, Sumatera Barat (1935)Lokasi sekarangMuseum Nasional, Jakarta Arca Bhairawa adalah patung batu raksasa dan kini menjadi salah satu koleksi pameran utama di Museum Nasional Indonesia.[1] Arca ini menggambarkan Bh...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Prince novel – news · newspapers · books · scholar · JSTOR (June 2020) (Learn how and when to remove this message) The topic of this article may not meet Wikipedia's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable ...

 

Red dwarf star in the constellation Carina J080822.18-644357.3 Artist's depiction of J080822.18-644357.3Credit: NASA/Jonathan Holden Observation dataEpoch J2000      Equinox J2000 Constellation Carina Right ascension 08h 08m 22.18s[1] Declination −64° 43′ 57.3″[1] Characteristics Evolutionary stage red dwarf Spectral type M5.5V[2] AstrometryRadial velocity (Rv)22.7 ± 0.5[1] km/sProper mo...

American teen sitcom This article is about the Nickelodeon television series. For other uses, see Victorious (disambiguation). VictoriousGenreTeen sitcomCreated byDan SchneiderShowrunnerDan SchneiderStarring Victoria Justice Leon Thomas III Matt Bennett Elizabeth Gillies Ariana Grande Avan Jogia Daniella Monet Theme music composer Łukasz Gottwald Michael Corcoran Dan Schneider Opening themeMake It Shine, performed by Victoria JusticeCountry of originUnited StatesOriginal languageEnglishNo. o...

 

安德斯·艾于克兰出生1972年9月12日  (51歲)滕斯贝格 母校挪威運動科學學院 职业越野滑雪运动员、dogsled musher、田径运动员  安德斯·艾于克兰(挪威語:Anders Aukland,1972年9月12日—),挪威男子越野滑雪运动员。他曾代表挪威参加2002年和2006年冬季奥林匹克运动会越野滑雪比赛,获得一枚金牌。[1] 参考资料 ^ Anders AUKLAND. International Olympic Committee. [2021...

 

Guerre de Neuf Ans Pour les articles homonymes, voir Ligue et Guerre de la Ligue. Guerre de la Ligue d'Augsbourg De gauche à droite et de haut en bas :bataille de la Hougue (1692), siège de Namur (1692), bataille de La Marsaille (1693), bombardement de Bruxelles (1695). Informations générales Date 24 septembre 1688 – 20 septembre 1697(8 ans, 11 mois et 27 jours) Lieu Europe, Amérique du Nord, Asie Issue Traités de Ryswick Louis XIV reconnaît le stathouder Guil...

Dornbusch Stadtteil Frankfurt am Main Letak Dornbusch (merah) dan Ortsbezirk Mitte-Nord (merah terang) di Frankfurt am Main NegaraJermanNegara bagianHessenWilayahDarmstadt KreisDistrik perkotaanTownFrankfurt am Main Luas • Total2,325 km2 (898 sq mi)Populasi (2007-12-31) • Total18.413 • Kepadatan7,9/km2 (21/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos60320, 60431, 60433Kode area telepon069Pelat kendaraanFSitus webwww.frankfurt.de Dor...

 

1917 film by Jack Conway Polly RedheadDirected byJack ConwayWritten byEdgar Jepson (novel)Elliott J. ClawsonStarringElla HallGertrude AstorCharles Hill MailesCinematographyEdward A. KullProductioncompanyUniversal PicturesDistributed byUniversal PicturesRelease date March 19, 1917 (1917-03-19) Running time5 reelsCountryUnited StatesLanguagesSilent English intertitles Polly Redhead is a 1917 American silent comedy film directed by Jack Conway and starring Ella Hall, Gertrude Asto...