Mertens' theorems

In analytic number theory, Mertens' theorems are three 1874 results related to the density of prime numbers proved by Franz Mertens.[1]

In the following, let mean all primes not exceeding n.

First theorem

Mertens' first theorem is that

does not exceed 2 in absolute value for any . (A083343)

Second theorem

Mertens' second theorem is

where M is the Meissel–Mertens constant (A077761). More precisely, Mertens[1] proves that the expression under the limit does not in absolute value exceed

for any .

Proof

The main step in the proof of Mertens' second theorem is

where the last equality needs which follows from .

Thus, we have proved that

.

Since the sum over prime powers with converges, this implies

.

A partial summation yields

.

Changes in sign

In a paper [2] on the growth rate of the sum-of-divisors function published in 1983, Guy Robin proved that in Mertens' 2nd theorem the difference

changes sign infinitely often, and that in Mertens' 3rd theorem the difference

changes sign infinitely often. Robin's results are analogous to Littlewood's famous theorem that the difference π(x) − li(x) changes sign infinitely often. No analog of the Skewes number (an upper bound on the first natural number x for which π(x) > li(x)) is known in the case of Mertens' 2nd and 3rd theorems.

Relation to the prime number theorem

Regarding this asymptotic formula Mertens refers in his paper to "two curious formula of Legendre",[1] the first one being Mertens' second theorem's prototype (and the second one being Mertens' third theorem's prototype: see the very first lines of the paper). He recalls that it is contained in Legendre's third edition of his "Théorie des nombres" (1830; it is in fact already mentioned in the second edition, 1808), and also that a more elaborate version was proved by Chebyshev in 1851.[3] Note that, already in 1737, Euler knew the asymptotic behaviour of this sum.

Mertens diplomatically describes his proof as more precise and rigorous. In reality none of the previous proofs are acceptable by modern standards: Euler's computations involve the infinity (and the hyperbolic logarithm of infinity, and the logarithm of the logarithm of infinity!); Legendre's argument is heuristic; and Chebyshev's proof, although perfectly sound, makes use of the Legendre-Gauss conjecture, which was not proved until 1896 and became better known as the prime number theorem.

Mertens' proof does not appeal to any unproved hypothesis (in 1874), and only to elementary real analysis. It comes 22 years before the first proof of the prime number theorem which, by contrast, relies on a careful analysis of the behavior of the Riemann zeta function as a function of a complex variable. Mertens' proof is in that respect remarkable. Indeed, with modern notation it yields

whereas the prime number theorem (in its simplest form, without error estimate), can be shown to imply [4]

In 1909 Edmund Landau, by using the best version of the prime number theorem then at his disposition, proved[5] that

holds; in particular the error term is smaller than for any fixed integer k. A simple summation by parts exploiting the strongest form known of the prime number theorem improves this to

for some .

Similarly a partial summation shows that is implied by the PNT.

Third theorem

Mertens' third theorem is

where γ is the Euler–Mascheroni constant (A001620).

Relation to sieve theory

An estimate of the probability of () having no factor is given by

This is closely related to Mertens' third theorem which gives an asymptotic approximation of

References

  1. ^ a b c F. Mertens. J. reine angew. Math. 78 (1874), 46–62 Ein Beitrag zur analytischen Zahlentheorie
  2. ^ Robin, G. (1983). "Sur l'ordre maximum de la fonction somme des diviseurs". Séminaire Delange–Pisot–Poitou, Théorie des nombres (1981–1982). Progress in Mathematics. 38: 233–244.
  3. ^ P.L. Tchebychev. Sur la fonction qui détermine la totalité des nombres premiers. Mémoires présentés à l'Académie Impériale des Sciences de St-Pétersbourg par divers savants, VI 1851, 141–157
  4. ^ I.3 of: G. Tenenbaum. Introduction to analytic and probabilistic number theory. Translated from the second French edition (1995) by C. B. Thomas. Cambridge Studies in Advanced Mathematics, 46. Cambridge University Press, Cambridge,1995.
  5. ^ Edmund Landau. Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig 1909, Repr. Chelsea New York 1953, § 55, p. 197-203.

Further reading

  • Yaglom and Yaglom Challenging mathematical problems with elementary solutions Vol 2, problems 171, 173, 174

Read other articles:

مجلس شورى المجاهدينحلف المطيّبين الأيديولوجية سلفية جهادية التأسيس تشكلت في 15 يناير 2006 انحلت في 16 أكتوبر 2006 مؤسسها أبو مصعب الزرقاوي المنطقة العراق المقر محافظة الأنبار، العراق   دولة العراق الإسلامية التنظيم القادة أبو علي الأنباري ⚔ (5 يناير 2006 – 16 أبريل 2006)أبو مص�...

 

Proses tekanan konstan pada diagram p–V. Untuk tenaga fluida, Fluida kerja adalah gas atau cairan yang terutama mentransfer gaya, gerak, atau energi mekanik. Dalam hidraulika, air atau fluida hidraulik mentransfer gaya antara komponen hidraulik seperti pompa hidraulik, silinder hidraulik, dan motor hidraulik yang dirangkai menjadi mesin hidraulik, sistem penggerak hidraulik, dan lainnya. Dalam pneumatik, fluida kerja adalah udara atau gas lain yang mentransfer gaya antar komponen pneumatik ...

 

Untuk kegunaan lain, lihat Pohon Kehidupan (disambiguasi). Pohon KehidupanPohon KehidupanNama asliShajarat-al-Hayatcode: ar is deprecated   (Arab)SpesiesProsopis cineraria Pohon Kehidupan Jalan berpasir menuju ke tempat tumbuhnya pohon kehidupan Pohon kehidupan, Tree of Life (Shajarat-al-Hayat) di Bahrain, adalah pohon Prosopis cineraria setinggi 9.75 meter (32 kaki) yang berumur lebih dari 400 tahun. Pohon ini tumbuh pada sebuah bukit di daerah Gurun Arab yang tandus, 2 kilometer (...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Scotland, Virginia – news · newspapers · books · scholar · JSTOR (February 2008) (Learn how and when to remove this template message) Census-designated place in Virginia, United StatesScotlandCensus-designated place (CDP)ScotlandLocation within the state of Vi...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2023)   شونباخ (بالألمانية: Schönbach)‏    شونباخ تقسيم إداري البلد النمسا[1] خصائص جغرافية إحداثيات 48°27′00″N 15°02′00″E / 48.45°N 15.033333333333°E / 48.45; 15.0333...

 

Microcomputer designed in 1974 MITS Altair 8800Altair 8800 Computer with 8-inch floppy disk systemDeveloperMITSManufacturerMITSRelease dateJanuary 1975; 49 years ago (1975-01)Introductory priceKit: US $439 ($2500 in 2023)Assembled: US $621 ($3500 in 2023)Units sold25,000[1]CPUIntel 8080 @ 2 MHz The Altair 8800 is a microcomputer designed in 1974 by MITS and based on the Intel 8080 CPU.[2] Interest grew quickly after it was featured on the cover of t...

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

Compulsive eating of non-food items Medical conditionPicaStomach contents of a psychiatric patient with pica: 1,446 items, including 457 nails, 42 screws, safety pins, spoon tops, and salt and pepper shaker tops.Pronunciation/ˈpaɪkə/ PY-kuh[1] SpecialtyPsychiatryCausesAnemiaAutismCulture-bound syndromeMalnutritionSchizophrenia Pica is the eating or craving of things that are not food.[2] It is classified as an eating disorder but can also be the result of an existing m...

 

Górnik ZabrzeNama lengkapKlub Sportowy Górnik ZabrzeJulukanGórnicy TrójkolorowiBerdiri14 Desember 1948StadionErnest Pohl Stadium,Zabrze, Polandia(Kapasitas: 24.563)Ketua Dariusz CzernikManajer Jan UrbanLigaEkstraklasa2022-23ke-6Situs webSitus web resmi klub Kostum kandang Kostum tandang Górnik Zabrze adalah tim sepak bola Polandia yang berbasis di Zabrze. Tim ini merupakan salah satu tim yang paling sukses di Polandia (pemenang Kejuaraan Polandia 1957, 1959, 1961, 1963, 1964, 1965, ...

Village in Blagoevgrad Province, BulgariaHotovoVillageCountry BulgariaProvinceBlagoevgrad ProvinceMunicipalitySandanskiTime zoneUTC+2 (EET) • Summer (DST)UTC+3 (EEST) Hotovo is a village in the municipality of Sandanski, in Blagoevgrad Province, Bulgaria.[1] References ^ Guide Bulgaria, Accessed May 5, 2010 vte Sandanski MunicipalityCapital: SandanskiVillages Belevehchevo Belyovo Bozhdovo Chereshnitsa Damyanitsa Debrene Doleni Dzhigurovo Golem Tsalim Goleshovo Gorna S...

 

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

 

2018 Milan Ciga Vasojević CupSeason2017–18DurationMarch 16–17, 2018Number of games3Number of teams4TV partner(s)Arena SportRegular seasonSeason MVP Ivanka Matić[1]FinalsChampionsPartizan 1953  Runners-upCrvena zvezda← 2016–17 2018–19 → The 2018 Milan Ciga Vasojević Cup was the 12th season of the Serbian women's national basketball cup tournament. Venue Banja Koviljača Banja Koviljača2017–18 Milan Ciga Vasojević Cup (Serbia) Vera Blagojević Sports Hall Ca...

County in Rhode Island, United States Narragansett Country redirects here. For the Narragansett tribals lands, see Narragansett Indian Reservation. County in Rhode IslandWashington CountyCountyFormer Washington County Courthouse in West KingstonLocation within the U.S. state of Rhode IslandRhode Island's location within the U.S.Coordinates: 41°27′16″N 71°34′52″W / 41.454544°N 71.581154°W / 41.454544; -71.581154Country United StatesState Rhode Isla...

 

Defunct unionist political party in 19th century Ireland Irish Loyal and Patriotic Union FoundedMay 1885; 139 years ago (May 1885)Dissolved1891; 133 years ago (1891)Succeeded byIrish Unionist AllianceHeadquartersDublinNewspaperNotes from IrelandIdeologyBig tentAnti-Home RuleIrish UnionismPolitics of IrelandPolitical partiesElections The Irish Loyal and Patriotic Union (ILPU) was a unionist political organisation in Ireland, established to oppose the Irish H...

 

Frequency range This article is about frequency range. For the organ stop (also called Soubasse), see Bourdon (organ pipe). For the type of singer, see Oktavist. For the object in mathematical topology, see Subbase. Double bass player Vivien Garry playing a show in New York City in 1947. The double bass is the sub-bass instrument of the orchestral strings family, as it produces the pitches in the lowest register for this family. Sub-bass sounds are the deep, low-register pitches below approxi...

Town and municipality in Puerto Rico Town and Municipality in Puerto Rico, United StatesCoamo Municipio Autónomo de CoamoTown and MunicipalityCoamo from Cerro Picó FlagCoat of armsNicknames: La Villa de San Blás de Illescas, Los Maratonistas, La Villa Añeja, Ciudad de las Aguas TermalesAnthem: Allá muy cerca del puebloMap of Puerto Rico highlighting Coamo MunicipalityCoordinates: 18°04′48″N 66°21′29″W / 18.08000°N 66.35806°W / 18.08000; -66.35806S...

 

वीरेन्द्र वीर विक्रम शाह King Bīrendra Bakron Alkaff ShāhRaja Birendra dengan pakaian tradisional NepalRaja NepalBerkuasa31 Januari 1972 – 1 Juni 2001Penobatan24 Februari 1975PendahuluMahendraPenerusDipendraInformasi pribadiKelahiran(1945-12-28)28 Desember 1945Istana Kerajaan Narayanhity, Kathmandu, NepalKematian1 Juni 2001(2001-06-01) (umur 55)Istana Kerajaan Narayanhity, Kathmandu, NepalWangsaShahAyahKing Mahendra Bir Bikram Shah DevIbuIndr...

 

تحوي هذه المقالة أو هذا القسم ترجمة آلية. فضلًا، ساهم في تدقيقها وتحسينها أو إزالتها لأنها تخالف سياسات ويكيبيديا. (نقاش)مواقع لاعبي الوسط باللون الأزرق لاعب وسط كرة قدم هو أحد المراكز في تشكيلة كرة القدم، ويقوم بعملية الربط بين الدفاع والهجوم، قد يكون لاعب وسط متراجع (لاعب...

Edmund DulacEdmund Dulac, 1914LahirEdmond Dulac22 Oktober 1882Toulouse, PrancisMeninggal25 May 1953 (usia 70)KebangsaanPrancis-InggrisPendidikanEcole des Beaux Arts; Académie JulianDikenal atasPelukis, ilustratorGerakan politikOrientalis Edmund Dulac (nee Edmond Dulac; 22 Oktober 1882 – 25 Mei 1953) adalah ilustrator majalah, ilustrator buku, dan perancang perangko Inggris. Lahir di Toulouse ia belajar hukum tetapi kemudian beralih ke studi seni di École des Beaux-Arts. Dia...

 

Port in BulgariaPort of VarnaPort of VarnaClick on the map for a fullscreen viewLocationCountryBulgariaLocationVarnaCoordinates43°11′32″N 27°54′26″E / 43.19222°N 27.90722°E / 43.19222; 27.90722UN/LOCODEBGVARDetailsOpened1906 (Varna-East), 1976 (Varna-West)Type of harbourNatural/ArtificialNo. of berthsfreight: 19 (Varna-West), 13 (Varna-East); passenger: 1 (Varna-East)max. draft11.2 m (Varna-West), 11.5 m (Varna-East)max. air-draft41.5 m. (Varna-West), unlim...