CN2 algorithm
The CN2 induction algorithm is a learning algorithm for rule induction.[1] It is designed to work even when the training data is imperfect. It is based on ideas from the AQ algorithm and the ID3 algorithm. As a consequence it creates a rule set like that created by AQ but is able to handle noisy data like ID3. Description of algorithmThe algorithm must be given a set of examples, TrainingSet, which have already been classified in order to generate a list of classification rules. A set of conditions, SimpleConditionSet, which can be applied, alone or in combination, to any set of examples is predefined to be used for the classification. routine CN2(TrainingSet) let the ClassificationRuleList be empty repeat let the BestConditionExpression be Find_BestConditionExpression(TrainingSet) if the BestConditionExpression is not nil then let the TrainingSubset be the examples covered by the BestConditionExpression remove from the TrainingSet the examples in the TrainingSubset let the MostCommonClass be the most common class of examples in the TrainingSubset append to the ClassificationRuleList the rule 'if ' the BestConditionExpression ' then the class is ' the MostCommonClass until the TrainingSet is empty or the BestConditionExpression is nil return the ClassificationRuleList routine Find_BestConditionExpression(TrainingSet) let the ConditionalExpressionSet be empty let the BestConditionExpression be nil repeat let the TrialConditionalExpressionSet be the set of conditional expressions, {x and y where x belongs to the ConditionalExpressionSet and y belongs to the SimpleConditionSet}. remove all formulae in the TrialConditionalExpressionSet that are either in the ConditionalExpressionSet (i.e., the unspecialized ones) or null (e.g., big = y and big = n) for every expression, F, in the TrialConditionalExpressionSet if F is statistically significant and F is better than the BestConditionExpression by user-defined criteria when tested on the TrainingSet then replace the current value of the BestConditionExpression by F while the number of expressions in the TrialConditionalExpressionSet > user-defined maximum remove the worst expression from the TrialConditionalExpressionSet let the ConditionalExpressionSet be the TrialConditionalExpressionSet until the ConditionalExpressionSet is empty return the BestConditionExpression References
External links
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve