Bohr–Sommerfeld model

Orbitals of the Radium. (End plates to [1])
5 electrons with the same principal and auxiliary quantum numbers, orbiting in sync. ([2] page 364)
The Sommerfeld extensions of the 1913 solar system Bohr model of the hydrogen atom showing the addition of elliptical orbits to explain spectral fine structure.

The Bohr–Sommerfeld model (also known as the Sommerfeld model or Bohr–Sommerfeld theory) was an extension of the Bohr model to allow elliptical orbits of electrons around an atomic nucleus. Bohr–Sommerfeld theory is named after Danish physicist Niels Bohr and German physicist Arnold Sommerfeld. Sommerfeld showed that, if electronic orbits are elliptical instead of circular (as in Bohr's model of the atom), the fine-structure of the hydrogen atom can be described.

The Bohr–Sommerfeld model added to the quantized angular momentum condition of the Bohr model with a radial quantization (condition by William Wilson, the Wilson–Sommerfeld quantization condition[3][4]):

where pr is the radial momentum canonically conjugate to the coordinate q, which is the radial position, and T is one full orbital period. The integral is the action of action-angle coordinates. This condition, suggested by the correspondence principle, is the only one possible, since the quantum numbers are adiabatic invariants.

Orbits of the hydrogen atom with the same principal quantum number, but different auxiliary quantum number ([2] page 367)

History

In 1913, Niels Bohr displayed rudiments of the later defined correspondence principle and used it to formulate a model of the hydrogen atom which explained its line spectrum. In the next few years Arnold Sommerfeld extended the quantum rule to arbitrary integrable systems making use of the principle of adiabatic invariance of the quantum numbers introduced by Hendrik Lorentz and Albert Einstein. Sommerfeld made a crucial contribution[5] by quantizing the z-component of the angular momentum, which in the old quantum era was called "space quantization" (German: Richtungsquantelung). This allowed the orbits of the electron to be ellipses instead of circles, and introduced the concept of quantum degeneracy. The theory would have correctly explained the Zeeman effect, except for the issue of electron spin. Sommerfeld's model was much closer to the modern quantum mechanical picture than Bohr's.

In the 1950s Joseph Keller updated Bohr–Sommerfeld quantization using Einstein's interpretation of 1917,[6] now known as Einstein–Brillouin–Keller method. In 1971, Martin Gutzwiller took into account that this method only works for integrable systems and derived a semiclassical way of quantizing chaotic systems from path integrals.[7]

Predictions

The Sommerfeld model predicted that the magnetic moment of an atom measured along an axis will only take on discrete values, a result which seems to contradict rotational invariance but which was confirmed by the Stern–Gerlach experiment. This was a significant step in the development of quantum mechanics. It also described the possibility of atomic energy levels being split by a magnetic field (called the Zeeman effect). Walther Kossel worked with Bohr and Sommerfeld on the Bohr–Sommerfeld model of the atom introducing two electrons in the first shell and eight in the second.[8]

Issues

The Bohr–Sommerfeld model was fundamentally inconsistent and led to many paradoxes. The magnetic quantum number measured the tilt of the orbital plane relative to the xy plane, and it could only take a few discrete values. This contradicted the obvious fact that an atom could be turned this way and that relative to the coordinates without restriction. The Sommerfeld quantization can be performed in different canonical coordinates and sometimes gives different answers. The incorporation of radiation corrections was difficult, because it required finding action-angle coordinates for a combined radiation/atom system, which is difficult when the radiation is allowed to escape. The whole theory did not extend to non-integrable motions, which meant that many systems could not be treated even in principle. In the end, the model was replaced by the modern quantum-mechanical treatment of the hydrogen atom, which was first given by Wolfgang Pauli in 1925, using Heisenberg's matrix mechanics. The current picture of the hydrogen atom is based on the atomic orbitals of wave mechanics, which Erwin Schrödinger developed in 1926.

However, this is not to say that the Bohr–Sommerfeld model was without its successes. Calculations based on the Bohr–Sommerfeld model were able to accurately explain a number of more complex atomic spectral effects. For example, up to first-order perturbations, the Bohr model and quantum mechanics make the same predictions for the spectral line splitting in the Stark effect. At higher-order perturbations, however, the Bohr model and quantum mechanics differ, and measurements of the Stark effect under high field strengths helped confirm the correctness of quantum mechanics over the Bohr model. The prevailing theory behind this difference lies in the shapes of the orbitals of the electrons, which vary according to the energy state of the electron.

The Bohr–Sommerfeld quantization conditions lead to questions in modern mathematics. Consistent semiclassical quantization condition requires a certain type of structure on the phase space, which places topological limitations on the types of symplectic manifolds which can be quantized. In particular, the symplectic form should be the curvature form of a connection of a Hermitian line bundle, which is called a prequantization.

Relativistic orbit

Orbitals of the hydrogen atom. The jumps from 31, 32, 33 to 22 all create the Balmer spectral line Hα, but they differ at the fine structure.[9] (Figure 27 [1])
Elliptical orbits with the same energy and quantized angular momentum

Arnold Sommerfeld derived the relativistic solution of atomic energy levels.[5] We will start this derivation[10] with the relativistic equation for energy in the electric potential

After substitution we get

For momentum , and their ratio the equation of motion is (see Binet equation)

with solution

The angular shift of periapsis per revolution is given by

With the quantum conditions

and

we will obtain energies

where is the fine-structure constant. This solution (using substitutions for quantum numbers) is equivalent to the solution of the Dirac equation.[11] Nevertheless, both solutions fail to predict the Lamb shifts.

See also

References

  1. ^ a b Kramers, Hendrik Anthony (1923). The atom and the Bohr theory of its structure : an elementary presentation. MIT Libraries. New York : A.A. Knopf.
  2. ^ a b Sommerfeld, Arnold Johannes Wilhelm (1921). Atombau und Spektrallinien. University of California. Braunschweig : F. Vieweg & Sohn.
  3. ^ A. Sommerfeld (1916). "Zur Quantentheorie der Spektrallinien". Annalen der Physik (in German). 51 (17): 1–94. Bibcode:1916AnP...356....1S. doi:10.1002/andp.19163561702.
  4. ^ W. Wilson (1915). "The quantum theory of radiation and line spectra". Philosophical Magazine. 29 (174): 795–802. doi:10.1080/14786440608635362.
  5. ^ a b Sommerfeld, Arnold (1919). Atombau und Spektrallinien'. Braunschweig: Friedrich Vieweg und Sohn. ISBN 978-3-87144-484-5.
  6. ^ The Collected Papers of Albert Einstein, vol. 6, A. Engel, trans., Princeton U. Press, Princeton, NJ (1997), p. 434
  7. ^ Stone, A.D. (August 2005). "Einstein's unknown insight and the problem of quantizing chaos" (PDF). Physics Today. 58 (8): 37–43. Bibcode:2005PhT....58h..37S. doi:10.1063/1.2062917.
  8. ^ Heilbron, John L. (1967). "The Kossel-Sommerfeld Theory and the Ring Atom". Isis. 58 (4): 450–485. doi:10.1086/350299. JSTOR 228422. S2CID 144639796.
  9. ^ Bohr, N. (July 1923). "The Structure of the Atom". Nature. 112 (2801): 29–44. doi:10.1038/112029a0. ISSN 1476-4687.
  10. ^ https://archive.org/details/atombauundspekt00sommgoog/page/n541 - Atombau und Spektrallinien, 1921, page 520
  11. ^ Ya I Granovski (2004). "Sommerfeld formula and Dirac's theory" (PDF). Physics-Uspekhi. 47 (5): 523–524. Bibcode:2004PhyU...47..523G. doi:10.1070/PU2004v047n05ABEH001885. S2CID 250900220.

Read other articles:

Virgie BakerLahir6 September 1975 (umur 48)Jakarta, IndonesiaPekerjaanPembawa acara, wartawanTahun aktif1999-sekarangSuami/istriAryo Widiardi Virgie Baker (lahir 6 September 1975) adalah seorang presenter televisi Indonesia. Saat ini ia bergabung bersama Metro TV. Pendidikan Baker merupakan alumni dari Universitas Indonesia jurusan sastra Jepang. Karier Ia memulai kariernya di dunia televisi sebagai presenter acara musik untuk salah satu stasiun TV nasional. Pada tahun 2000, Baker ...

 

Pour les articles homonymes, voir Quatrième République. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Certaines informations figurant dans cet article ou cette section devraient être mieux reliées aux sources mentionnées dans les sections « Bibliographie », « Sources » ou « Liens externes » (août 2018). Vous pouvez améliorer la vérifiabilité en associant ces informations à des références à l'aide d'appels de ...

 

العلاقات البريطانية الكوستاريكية المملكة المتحدة كوستاريكا   المملكة المتحدة   كوستاريكا تعديل مصدري - تعديل   العلاقات البريطانية الكوستاريكية هي العلاقات الثنائية التي تجمع بين المملكة المتحدة وكوستاريكا.[1][2][3][4][5] مقارنة بين البلدين ...

  هذه المقالة عن وحدة قياس شدة التيار. لمعانٍ أخرى، طالع أندريه ماري أمبير. أمبيرمعلومات عامةالنوع وحدة دولية أساسية[1] — وحدة متماسكة حسب نظام الوحدات الدولي — وحدة مشتقة من UCUM جزء من MKSA system of units (en) تستخدم لقياس شدة التيار الكهربائي[1][2][3] — magnetic scalar pote...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

François Villon BiografiKelahiran(fr) François de Montcorbier 1431 Paris Kematian1463 (31/32 tahun)Prancis Data pribadiPendidikanUniversitas Paris KegiatanSpesialisasiPuisi Pekerjaanpenyair, penulis lirik, penulis Karya kreatifKarya terkenal(1461 (Kalender Masehi Gregorius)) Le Testament(1489 (Kalender Masehi Gregorius)) Ballade des pendus(15 abad) Épître à Marie d'Orléans François Villon (bahasa Prancis modern IPA: [fʀɑ̃'swa vi'jɔ̃], bahasa Prancis abad ke-15 IPA: [fʀɑn...

SpaceX Crew Dragon spacecraft EnduranceTypeSpace capsuleClassDragon 2EponymEndurance (1912)Serial no.C210OwnerSpaceXManufacturerSpaceXSpecificationsDimensions4.4 m × 3.7 m (14 ft × 12 ft)PowerSolar panelRocketFalcon 9 Block 5HistoryLocationHawthorne, CaliforniaFirst flight11 November 2021 – 6 May 2022SpaceX Crew-3Last flight26 August 2023 – 12 March 2024SpaceX Crew-7Flights3Flight time532 days and 15 hoursDragon 2s← C209C211 → Crew Dra...

 

Questa voce sull'argomento calciatori italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Vincenzo Venturi Nazionalità  Italia Calcio Ruolo Centrocampista Carriera Squadre di club1 1921-1922 SPAL? (?)1926-1927 Napoli9 (0)1932-1933 Molinella? (?) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → indica un trasferimento in pr...

 

Marshall McLuhanLahirHerbert Marshall McLuhan(1911-07-21)21 Juli 1911Edmonton, Alberta, KanadaMeninggal31 Desember 1980(1980-12-31) (umur 69)Toronto, Ontario, KanadaAliranTeori media, Teori Sekolah Komunikasi TorontoMinat utamaMedia komunikasi, media massa, sensorium, Kritisme BaruGagasan pentingMedia adalah pesan, desa global, sosok dan latar media, tetrad dampak media, media panas dan dingin Dipengaruhi Harold Innis, Eric A. Havelock, Thomas Nashe, G. K. Chesterton, I. A. Ri...

Strap or harness to hold or carry a firearm An M16A4 and M4 carbine with different slings. The green sling to the left is a traditional two-point sling, while the tan sling to the right is a modern quick-adjustable two-point sling. In the context of firearms, a sling is a type of strap or harness designed to allow a shooter to conveniently carry a firearm (usually a long gun such as a rifle, carbine, shotgun, submachine gun or GPMG) on their body, and/or to aid in greater hit probability by a...

 

1948 film by Frank Capra State of the UnionTheatrical release posterDirected byFrank CapraWritten by Myles Connolly Anthony Veiller (screenplay) Based onState of the Unionby Russel Crouse and Howard LindsayProduced by Frank Capra Anthony Veiller Starring Spencer Tracy Katharine Hepburn CinematographyGeorge J. FolseyEdited byWilliam W. HornbeckMusic byVictor YoungProductioncompanyLiberty FilmsDistributed byMetro-Goldwyn-MayerRelease date April 7, 1948 (1948-04-07) Running time12...

 

Town in Békés County, Hungary Town in Békés, HungaryMedgyesegyháza MedešTown FlagCoat of armsMedgyesegyházaCoordinates: 46°30′N 21°02′E / 46.50°N 21.03°E / 46.50; 21.03CountryHungaryCountyBékésDistrictMezőkovácsházaArea • Total64.32 km2 (24.83 sq mi)Population (2015)[1] • Total3,558 • Density55/km2 (140/sq mi)Time zoneUTC+1 (CET) • Summer (DST)UTC+2 (CEST)Postal code56...

Difference between the inflow and outflow of money to a country at a given time Not to be confused with Balance of trade. Country foreign exchange reserves minus external debt In international economics, the balance of payments (also known as balance of international payments and abbreviated BOP or BoP) of a country is the difference between all money flowing into the country in a particular period of time (e.g., a quarter or a year) and the outflow of money to the rest of the world. In other...

 

Tour de France 1920GénéralitésCourse 14e Tour de FranceÉtapes 15Date 27 juin - 25 juillet 1920Distance 5 503 kmPays traversé(s) FranceLieu de départ ParisLieu d'arrivée ParisPartants 91Coureurs au départ 113Coureurs à l'arrivée 22Vitesse moyenne 24,072 km/hRésultatsVainqueur Philippe ThysDeuxième Hector HeusghemTroisième Firmin LambotTour de France 1919Tour de France 1921modifier - modifier le code - modifier Wikidata Le Tour de France 1920, 14e édition du To...

 

香港學術及職業資歷評審局 Hong Kong Council for Accreditation of Academic and Vocational Qualifications  香港特別行政區公營機構香港學術及職業資歷評審局 標誌主席陳仲尼,SBS,JP副主席鄭惠貞,JP總幹事周慶邦部門資訊成立日期2007年法律基礎第1150章《香港學術及職業資歷評審局條例》類型法定機構總部 香港柴灣小西灣道10號聯絡資訊網站官方網站 香港學術及職業資歷評審局位於...

  لمعانٍ أخرى، طالع بارما (توضيح).   هذه المقالة عن المدينة الإيطالية. لنادي بارما، طالع نادي بارما. بارما    علم شعار   الإحداثيات 44°48′05″N 10°19′41″E / 44.801472222222°N 10.328°E / 44.801472222222; 10.328   [1] تقسيم إداري  البلد إيطاليا (22 مارس 1860–)[2][3&#...

 

Political party in Nepal This article is about party led by Upendra Yadav. For new socialist party under Ashok Rai faction of this party, see People's Socialist Party. People's Socialist Party, Nepal जनता समाजवादी पार्टी, नेपालAbbreviationPSP-NChairpersonUpendra YadavSpokespersonManish Kumar Suman[1]Founded22 April 2020; 4 years ago (2020-04-22)Merger ofRJPNSPNHeadquartersBalkumari, LalitpurStudent wingSocialist Stud...

 

Hari Orang Muda Sedunia di Roma tahun 2000 Hari Orang Muda Sedunia atau dalam bahasa Inggris World Youth Day (WYD) adalah festival bagi kaum muda yang diselenggarakan oleh Gereja Katolik yang diprakarsai oleh Paus Yohanes Paulus II pada tahun 1985. Konsepnya telah dipengaruhi oleh Gerakan Light-Life yang telah ada di Polandia sejak tahun 1960-an, di mana selama perkemahan musim panas kaum muda Katolik selama 13 hari merayakan perkemahan hari komunitas. Untuk perayaan pertama WYD pada tahun 19...

Natalija Fokina-SemenovaNatalija Fokina-Semenova ai mondiali di Osaka 2007.Nazionalità Ucraina Altezza178 cm Peso85 kg Atletica leggera SpecialitàLancio del disco SquadraDynamo Horlivka Record Disco 64,70 m (2008) CarrieraNazionale 2003- Ucraina Palmarès Competizione Ori Argenti Bronzi Europei 0 0 1 Europei under 23 1 0 0 Europei juniores 1 0 0 Universiadi 1 0 0 Vedi maggiori dettagliStatistiche aggiornate all'11 settembre 2012 Modifica dati su Wikidata · Manuale Natalija Viktor...

 

此生者传记条目需要补充更多可供查證的来源。 (2021年3月13日)请协助補充可靠来源,无法查证的在世人物内容将被立即移除。 Jennifer Lopez珍妮佛·羅培茲洛佩兹在2019年女歌手昵称JLo、蘿霸、翹臀珍、拉丁天后国籍 美国出生Jennifer Lynn Lopez詹妮弗·琳恩·洛佩兹 (1969-07-24) 1969年7月24日(55歲) 美国纽约市布朗克斯职业歌手舞者演員企業家配偶Ojani Noa(1997年结婚—1998年離�...