Admissible decision rule

In statistical decision theory, an admissible decision rule is a rule for making a decision such that there is no other rule that is always "better" than it[1] (or at least sometimes better and never worse), in the precise sense of "better" defined below. This concept is analogous to Pareto efficiency.

Definition

Define sets , and , where are the states of nature, the possible observations, and the actions that may be taken. An observation of is distributed as and therefore provides evidence about the state of nature . A decision rule is a function , where upon observing , we choose to take action .

Also define a loss function , which specifies the loss we would incur by taking action when the true state of nature is . Usually we will take this action after observing data , so that the loss will be . (It is possible though unconventional to recast the following definitions in terms of a utility function, which is the negative of the loss.)

Define the risk function as the expectation

Whether a decision rule has low risk depends on the true state of nature . A decision rule dominates a decision rule if and only if for all , and the inequality is strict for some .

A decision rule is admissible (with respect to the loss function) if and only if no other rule dominates it; otherwise it is inadmissible. Thus an admissible decision rule is a maximal element with respect to the above partial order. An inadmissible rule is not preferred (except for reasons of simplicity or computational efficiency), since by definition there is some other rule that will achieve equal or lower risk for all . But just because a rule is admissible does not mean it is a good rule to use. Being admissible means there is no other single rule that is always as good or better – but other admissible rules might achieve lower risk for most that occur in practice. (The Bayes risk discussed below is a way of explicitly considering which occur in practice.)

Bayes rules and generalized Bayes rules

Bayes rules

Let be a probability distribution on the states of nature. From a Bayesian point of view, we would regard it as a prior distribution. That is, it is our believed probability distribution on the states of nature, prior to observing data. For a frequentist, it is merely a function on with no such special interpretation. The Bayes risk of the decision rule with respect to is the expectation

A decision rule that minimizes is called a Bayes rule with respect to . There may be more than one such Bayes rule. If the Bayes risk is infinite for all , then no Bayes rule is defined.

Generalized Bayes rules

In the Bayesian approach to decision theory, the observed is considered fixed. Whereas the frequentist approach (i.e., risk) averages over possible samples , the Bayesian would fix the observed sample and average over hypotheses . Thus, the Bayesian approach is to consider for our observed the expected loss

where the expectation is over the posterior of given (obtained from and using Bayes' theorem).

Having made explicit the expected loss for each given separately, we can define a decision rule by specifying for each an action that minimizes the expected loss. This is known as a generalized Bayes rule with respect to . There may be more than one generalized Bayes rule, since there may be multiple choices of that achieve the same expected loss.

At first, this may appear rather different from the Bayes rule approach of the previous section, not a generalization. However, notice that the Bayes risk already averages over in Bayesian fashion, and the Bayes risk may be recovered as the expectation over of the expected loss (where and ). Roughly speaking, minimizes this expectation of expected loss (i.e., is a Bayes rule) if and only if it minimizes the expected loss for each separately (i.e., is a generalized Bayes rule).

Then why is the notion of generalized Bayes rule an improvement? It is indeed equivalent to the notion of Bayes rule when a Bayes rule exists and all have positive probability. However, no Bayes rule exists if the Bayes risk is infinite (for all ). In this case it is still useful to define a generalized Bayes rule , which at least chooses a minimum-expected-loss action for those for which a finite-expected-loss action does exist. In addition, a generalized Bayes rule may be desirable because it must choose a minimum-expected-loss action for every , whereas a Bayes rule would be allowed to deviate from this policy on a set of measure 0 without affecting the Bayes risk.

More important, it is sometimes convenient to use an improper prior . In this case, the Bayes risk is not even well-defined, nor is there any well-defined distribution over . However, the posterior —and hence the expected loss—may be well-defined for each , so that it is still possible to define a generalized Bayes rule.

Admissibility of (generalized) Bayes rules

According to the complete class theorems, under mild conditions every admissible rule is a (generalized) Bayes rule (with respect to some prior —possibly an improper one—that favors distributions where that rule achieves low risk). Thus, in frequentist decision theory it is sufficient to consider only (generalized) Bayes rules.

Conversely, while Bayes rules with respect to proper priors are virtually always admissible, generalized Bayes rules corresponding to improper priors need not yield admissible procedures. Stein's example is one such famous situation.

Examples

The James–Stein estimator is a nonlinear estimator of the mean of Gaussian random vectors and can be shown to dominate the ordinary least squares technique with respect to a mean-squared-error loss function.[2] Thus least squares estimation is not an admissible estimation procedure in this context. Some others of the standard estimates associated with the normal distribution are also inadmissible: for example, the sample estimate of the variance when the population mean and variance are unknown.[3]

Notes

  1. ^ Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms. OUP. ISBN 0-19-920613-9 (entry for admissible decision function)
  2. ^ Cox & Hinkley 1974, Section 11.8
  3. ^ Cox & Hinkley 1974, Exercise 11.7

References

  • Cox, D. R.; Hinkley, D. V. (1974). Theoretical Statistics. Wiley. ISBN 0-412-12420-3.
  • Berger, James O. (1980). Statistical Decision Theory and Bayesian Analysis (2nd ed.). Springer-Verlag. ISBN 0-387-96098-8.
  • DeGroot, Morris (2004) [1st. pub. 1970]. Optimal Statistical Decisions. Wiley Classics Library. ISBN 0-471-68029-X.
  • Robert, Christian P. (1994). The Bayesian Choice. Springer-Verlag. ISBN 3-540-94296-3.

Read other articles:

Radio station in San Saba, TexasKNUZSan Saba, TexasFrequency106.1 MHzBrandingTexas FM 106ProgrammingFormatCountry musicOwnershipOwnerRoy E. Henderson(S Content Marketing, LLC)Sister stationsKROYHistoryFormer call signsKBAL-FM (1995-2009)Technical informationFacility ID65315ClassAERP3,000 wattsHAAT6.0 metersTransmitter coordinates31°11′26″N 98°42′55″W / 31.19056°N 98.71528°W / 31.19056; -98.71528LinksWebsiteOfficial website KNUZ (106.1 FM) is a radio station...

 

Buddha yang Belum SelesaiLetakMuseum KarmawibhanggaIndonesiaJenisKultural Buddha yang Belum Selesai (Inggris: Unfinished Buddha) adalah sebuah nama yang diberikan kepada sebuah arca yang diperkirakan berasal dari stupa terbesar di Candi Borobudur. Asal usul arca ini belum diketahui. Tetapi, diperkirakan bahwa arca ini berada di bawah sebuah pohon di samping Candi Borobudur. Penamaan Patung Buddha yang tidak sempurna disebut tidak sempurna karena terlihat belum selesai dalam pengerjaannya....

 

Katedral BathurstKatedral Hati KudusInggris: Sacred Heart CathedralKatedral Bathurst47°37′04″N 65°39′19″W / 47.6178°N 65.6554°W / 47.6178; -65.6554Koordinat: 47°37′04″N 65°39′19″W / 47.6178°N 65.6554°W / 47.6178; -65.6554LokasiBathurst, New BrunswickNegaraKanadaDenominasiGereja Katolik RomaArsitekturStatusKatedralStatus fungsionalAktifTipe arsitekturNorman-GothicAdministrasiKeuskupanKeuskupan Bathurst di Kanada Katedr...

Paraguayan tennis player This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this template message) Ramón DelgadoCountry (sports) ParaguayResidence...

 

Valerie Plame. L'affaire Plame-Wilson ou controverse Cooper-Miller-Novak est un scandale politique américain qui met en cause l'administration du président des États-Unis George W. Bush. Cette affaire débute le 14 juillet 2003 avec la divulgation de l'identité d'un agent secret de la Central Intelligence Agency, Valerie Plame, épouse d'un ambassadeur américain, Joseph C. Wilson, qui avait démenti la vente d'uranium par le Niger à l'Irak, mettant en difficulté le président Bush et s...

 

American tennis player (born 1993) Marcos GironGiron at the 2023 Washington OpenFull nameMarcos Andres GironCountry (sports) United StatesResidenceThousand Oaks, California, U.S.Born (1993-07-24) July 24, 1993 (age 30)Thousand Oaks, California, U.S.Height5 ft 11 in (1.80 m)Turned pro2014PlaysRight-handed (two-handed backhand)CollegeUCLACoachKarue Sell, Maxime TabatruongPrize moneyUS $4,024,901[1]SinglesCareer record88–103 (46.1%) (at ATP ...

American Hockey League championship trophy Not to be confused with Calder Memorial Trophy. Calder CupSportIce hockeyCompetitionCalder Cup playoffsAwarded forWinner of the American Hockey League playoffsHistoryFirst award1937First winnerSyracuse Stars (1)Most winsHershey Bears (12)Most recentHershey Bears (12) The Calder Cup is the trophy awarded annually to the playoff champions of the American Hockey League. It was first presented in 1937 to the Syracuse Stars.[N 1] The cup is made o...

 

 Documentation[voir] [modifier] [historique] [purger] Ce modèle respecte les conventions des Infobox V2. Les infobox version 2 améliorent l’aspect, la simplicité et la flexibilité des infobox de Wikipédia. L’intérêt est d’harmoniser l’apparence par des feuilles de style en cascade, des pictogrammes thématiques, une simplification du code ainsi que la possibilité de généricité qui consiste à fusionner plusieurs modèles en un seul ...

 

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

Pertempuran Alam el HalfaBagian dari Kampanye Gurun Barat pada Perang Dunia KeduaPeta Jerman, Schlacht bei Alam HalfaTanggal30 Agustus – 5 September 1942Lokasi30°40′N 29°10′E / 30.667°N 29.167°E / 30.667; 29.167Koordinat: 30°40′N 29°10′E / 30.667°N 29.167°E / 30.667; 29.167Dekat El Alamein, MesirHasil Kemenangan Sekutu[1]Pihak terlibat  Britania Raya Selandia Baru  Jerman ItaliaTokoh dan pemimpin Ber...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يناير 2016) 3000 متر موانع في الألعاب الأولمبية الصيفية 2012 - رجال في الألعاب الأولمبية الصيفية تعديل مصدري - تعديل   طا...

 

Si UnyilGenreAnak-anakNegara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. musim18Jmlh. episode10.700 (berjalan pada 23 Februari 2024)ProduksiDurasi30 menitRumah produksiPPFN (2007-2024)Trans Media (2007-2024)Net Visi Media (2023-2024)Rilis asliJaringanTrans7 (2007-2024)NET. (2023-2924)RilisSenin, 19 Maret 2007 –Jumat, 23 Februari 2024Acara terkaitBuku Harian Si Unyil Si Unyil (sebelumnya Laptop Si Unyil) adalah sebuah program anak-anak yang tayang pertama kali di Trans7 mulai tanggal...

Collection of short stories by Rudyard Kipling, first published in 1888 The Phantom 'Rickshaw and Other Tales Cover of the 1888 editionAuthorRudyard KiplingCountryBritish IndiaLanguageEnglishSeriesIndian Railway LibraryPublisherA H Wheeler & CoPublication date1888Media typePrint (Hardback & Paperback) The Phantom 'Rickshaw and Other Tales, also known as The Phantom 'Rickshaw & other Eerie Tales, is a collection of short stories by Rudyard Kipling, first published in 1888. The...

 

Finnish footballer (born 1988) Jonne Hjelm Hjelm with Ilves in 2016Personal informationFull name Jonne HjelmDate of birth (1988-01-14) 14 January 1988 (age 36)Place of birth Tampere, Finland[1]Height 1.81 m (5 ft 11 in)Position(s) ForwardYouth career IlvesSenior career*Years Team Apps (Gls)2007–2010 Tampere United 78 (19)2007 → PP-70 (loan) 11 (2)2008 → TPV (loan) 1 (1)2011–2012 Wehen Wiesbaden 8 (0)2011 → Wehen Wiesbaden II 1 (1)2012 FC Haka 12 (4)2013�...

 

1st century AD Vietnamese queens and military leaders For the rebellion led by them, see Trung sisters' rebellion. Hai Ba Trung redirects here. For the district in Hanoi named after them, see Hai Bà Trưng District. Trưng sistersThe Trưng sisters ride elephants into battle in this Đông Hồ style painting. VietnameseHai Bà TrưngHán-Nôm𠄩婆徵Literal meaningTwo ladies Trưng Part of a series on the History of Vietnam Prehistoric Paleolithic Sơn Vi culture 20,000 BC–12,000 BC Mes...

For Barack Obama's first 100 days in office, see First 100 days of Barack Obama's presidency. This article is part of a series aboutBarack Obama Pre-presidency Early life and career Illinois State Senator 2004 DNC keynote address U.S. Senator from Illinois 2004 election sponsored bills 44th President of the United States Presidency timeline Transition Inaugurations Trips international Policies Economy Energy Foreign policy Arctic Europe East Asia Middle East South Asia Obama Doctrine Pardons...

 

American college football rivalry Alabama–Mississippi State football rivalry Alabama Crimson Tide Mississippi State Bulldogs First meetingNovember 14, 1896Alabama, 20–0Latest meetingSeptember 30, 2023Alabama, 40–17Next meetingTBDStatisticsMeetings total108All-time series86–18–3[1]Alabama leads 88–17–3 on the field, but two wins were vacated or forfeited.[n 1][2]Largest victoryAlabama, 59–0 (1922)Longest win streakAlabama, 22 (1958–1979)Current win str...

 

Şah SultanKelahiranca 1543Karaman, Kekaisaran OttomanKematian3 November 1580(1580-11-03) (umur 36–37)[1]Konstantinopel, Kekaisaran Ottoman (saat ini Istanbul, Turki)PemakamanMasjid Zal Mahmud PashaWangsaOttomanAyahSelim IIIbuNurbanu SultanPasangan Çakırcıbaşı Hasan Pasha ​ ​(m. 1562; meninggal 1574)​ Zal Mahmud Pasha ​(m. 1575)​ AnakPernikahan keduaFülane HanımsultanSultanzade Köse Hüsr...

Sporting event delegationCosta Rica at the1980 Summer OlympicsIOC codeCRCNOCComité Olímpico de Costa RicaWebsitewww.concrc.org (in Spanish)in MoscowCompetitors29 (28 men, 1 woman) in 5 sportsFlag bearer María ParísMedals Gold 0 Silver 0 Bronze 0 Total 0 Summer Olympics appearances (overview)19361948–19601964196819721976198019841988199219962000200420082012201620202024 Costa Rica competed at the 1980 Summer Olympics in Moscow, USSR. The Costa Rican contingent comprised 29 compet...

 

Kiryat MosheLingkunganNegara IsraelProvinsiYerusalemKotaYerusalemZona waktuUTC+3 (EAT) • Musim panas (DST)UTC+3 (EAT) Kiryat Moshe adalah sebuah lingkungan di kota suci Yerusalem di Provinsi Yerusalem, tepatnya di sebelah timur Israel.[1] Referensi ^ National Geospatial-Intelligence Agency. GeoNames database entry. (search Diarsipkan 2017-03-18 di Wayback Machine.) Accessed 12 May 2011. lbsLingkungan di YerusalemLingkungan-lingkungan Yerusalem sebelah timur garis genc...