Laplace's approximation

Laplace's approximation provides an analytical expression for a posterior probability distribution by fitting a Gaussian distribution with a mean equal to the MAP solution and precision equal to the observed Fisher information.[1][2] The approximation is justified by the Bernstein–von Mises theorem, which states that, under regularity conditions, the error of the approximation tends to 0 as the number of data points tends to infinity.[3][4]

For example, consider a regression or classification model with data set comprising inputs and outputs with (unknown) parameter vector of length . The likelihood is denoted and the parameter prior . Suppose one wants to approximate the joint density of outputs and parameters . Bayes' formula reads:

The joint is equal to the product of the likelihood and the prior and by Bayes' rule, equal to the product of the marginal likelihood and posterior . Seen as a function of the joint is an un-normalised density.

In Laplace's approximation, we approximate the joint by an un-normalised Gaussian , where we use to denote approximate density, for un-normalised density and the normalisation constant of (independent of ). Since the marginal likelihood doesn't depend on the parameter and the posterior normalises over we can immediately identify them with and of our approximation, respectively.

Laplace's approximation is

where we have defined

where is the location of a mode of the joint target density, also known as the maximum a posteriori or MAP point and is the positive definite matrix of second derivatives of the negative log joint target density at the mode . Thus, the Gaussian approximation matches the value and the log-curvature of the un-normalised target density at the mode. The value of is usually found using a gradient based method.

In summary, we have

for the approximate posterior over and the approximate log marginal likelihood respectively.

The main weaknesses of Laplace's approximation are that it is symmetric around the mode and that it is very local: the entire approximation is derived from properties at a single point of the target density. Laplace's method is widely used and was pioneered in the context of neural networks by David MacKay,[5] and for Gaussian processes by Williams and Barber.[6]

References

  1. ^ Kass, Robert E.; Tierney, Luke; Kadane, Joseph B. (1991). "Laplace's method in Bayesian analysis". Statistical Multiple Integration. Contemporary Mathematics. Vol. 115. pp. 89–100. doi:10.1090/conm/115/07. ISBN 0-8218-5122-5.
  2. ^ MacKay, David J. C. (2003). "Information Theory, Inference and Learning Algorithms, chapter 27: Laplace's method" (PDF).
  3. ^ Hartigan, J. A. (1983). "Asymptotic Normality of Posterior Distributions". Bayes Theory. Springer Series in Statistics. New York: Springer. pp. 107–118. doi:10.1007/978-1-4613-8242-3_11. ISBN 978-1-4613-8244-7.
  4. ^ Kass, Robert E.; Tierney, Luke; Kadane, Joseph B. (1990). "The Validity of Posterior Expansions Based on Laplace's Method". In Geisser, S.; Hodges, J. S.; Press, S. J.; Zellner, A. (eds.). Bayesian and Likelihood Methods in Statistics and Econometrics. Elsevier. pp. 473–488. ISBN 0-444-88376-2.
  5. ^ MacKay, David J. C. (1992). "Bayesian Interpolation" (PDF). Neural Computation. 4 (3). MIT Press: 415–447. doi:10.1162/neco.1992.4.3.415. S2CID 1762283.
  6. ^ Williams, Christopher K. I.; Barber, David (1998). "Bayesian classification with Gaussian Processes" (PDF). IEEE Transactions on Pattern Analysis and Machine Intelligence. 20 (12). IEEE: 1342–1351. doi:10.1109/34.735807.

Further reading

  • Amaral Turkman, M. Antónia; Paulino, Carlos Daniel; Müller, Peter (2019). "The Classical Laplace Method". Computational Bayesian Statistics : An Introduction. Cambridge: Cambridge University Press. pp. 154–159. ISBN 978-1-108-48103-8.
  • Tanner, Martin A. (1996). "Posterior Moments and Marginalization Based on Laplace's Method". Tools for Statistical Inference. New York: Springer. pp. 44–51. ISBN 0-387-94688-8.

Read other articles:

Peta Aceh Besar dan Pidie pada tahun 1898, dibuat oleh Belanda, tampak daerah Sagi 22,25, dan 26 MukimArtikel ini adalah bagian dari seriPembagian administratifIndonesia Tingkat I Provinsi Daerah istimewa Daerah khusus Tingkat II Kabupaten Kota Kabupaten administrasi Kota administrasi Tingkat III Kecamatan Distrik Kapanewon Kemantren Tingkat IV Kelurahan Desa Dusun (Bungo) Gampong Kute Kalurahan Kampung Kalimantan Timur Lampung Papua Riau Lembang Nagari Nagori Negeri Maluku Maluku Tengah Nege...

 

Adani GroupJenisPerusahaan swastaIndustriPerusahaan konglomeratDidirikan20 Juli, 1988PendiriGautam AdaniKantorpusatAhmedabad, GujaratWilayah operasiDi seluruh duniaTokohkunciGautam Adani (Chairman & MD)JasaManajemen pelabuhan, Industri listrik, Pertambangan, Energi diperbaharui, Operasi bandara, Gas dan oli, Pemrosesan Makanan, InfrastrukturPendapatan $23.3 miliar (2022)[1]PemilikGautam Adani (100%)Karyawan23,000+[2]Anakusaha Adani Enterprises Adani Ports & SEZ Adani G...

 

City in Missouri, United StatesWentzville, MissouriCityCity of WentzvilleOld Downtown WentzvilleLocation of WentzvilleCoordinates: 38°48′58″N 90°51′26″W / 38.81611°N 90.85722°W / 38.81611; -90.85722CountryUnited StatesStateMissouriCountySt. Charles CountyFounded1855Government • MayorNick GuccioneArea[1] • Total20.94 sq mi (54.24 km2) • Land20.93 sq mi (54.20 km2) • Water0...

Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Longton, Staffordshire kota kecil Longton, StaffordshireTempat Negara berdaulatBritania RayaNegara konstituen di Britania RayaInggrisRegion di InggrisWest MidlandsProvinsi di InggrisStaffordshireUnitary authority area in England (en)City of Stoke-on-Trent (en) NegaraBritania Raya Informasi tambahanKode posST3 Zona wakt...

 

مخطط دائرة لمحرك حثي ذي ثغرة هوائية ثابتة وضع التصور الأول لمخطط الدائرة بواسطة هيلاند عام 1894 وبيهرند عام 1895، وهو تمثيل بياني لأداء آلة كهربية.[1][2][3] ويرسم المخطط بمعلومية جهد وتيار الدخل للآلة.[4] يمكن رسم مخطط الدائرة للمنوبات والمحركات التزامنية والمحول�...

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne s'appuie pas, ou pas assez, sur des sources secondaires ou tertiaires (mai 2023). Pour améliorer la vérifiabilité de l'article ainsi que son intérêt encyclopédique, il est nécessaire, quand des sources primaires sont citées, de les associer à des analyses faites par des sources secondaires. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article doit ê...

American politician (born 1970) Allan FungFung in 2016Mayor of Cranston, Rhode IslandIn officeJanuary 5, 2009 – January 4, 2021Preceded byMichael NapolitanoSucceeded byKenneth Hopkins Personal detailsBornAllan Wai-Ket Fung (1970-02-25) February 25, 1970 (age 54)Providence, Rhode Island, U.S.Political partyRepublicanSpouse Barbara Fenton ​(m. 2016)​EducationRhode Island College (BA)Suffolk University (JD)Chinese nameTraditional Chinese馮偉傑...

 

Cet article concerne l'instrument de musique. Pour les autres significations, voir Orgue (homonymie). Orgue Grand orgue de la cathédrale Notre-Dame de Laon. Variantes modernes Orgue à tuyaux, orgue liturgique Variantes historiques Flûte de Pan Classification Orgues Famille Instrument à clavier et à vent Instruments voisins HarmoniumOrgue Hammond Tessiture Œuvres principales Compositions pour orgue Instrumentistes bien connus Jean-Sébastien Bach, François Couperin, Wilhelm Friedem...

 

Questa voce o sezione sull'argomento attori statunitensi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Missi Pyle al Los Angeles WonderCon nel 2016 Missi Pyle, vero nome Andrea Kay Pyle (Houston, 16 novembre 1972), è un'attrice statunitense. Indice 1 Biografia 2 Filmografia 2.1 Cinema 2.2 Televisione 2...

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada. Busca fuentes: «Showbol» – noticias · libros · académico · imágenesEste aviso fue puesto el 12 de junio de 2013. Showbol Partido de showbolAutoridad deportiva WMFOtros nombres Fútbol rápidoCaracterísticasContacto Deporte de contacto físicoGénero Masculino y femeninoCategoría Deporte de equipoPelota Balón esféricoFormato del puntaje GolOlímpico No[editar datos...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Space Truckin' – news · newspapers · books · scholar · JSTOR (August 2009) (Learn how and when to remove this message) 1972 song by Deep PurpleSpace Truckin'Cover of the 1973 Philippines singleSong by Deep Purplefrom the album Machine Head ReleasedMarch 1972Re...

 

Second World War poster Keep out malaria mosquitoes repair your torn screens. U.S. Public Health Service, 1941–45 The history of malaria extends from its prehistoric origin as a zoonotic disease in the primates of Africa through to the 21st century. A widespread and potentially lethal human infectious disease, at its peak malaria infested every continent except Antarctica.[1] Its prevention and treatment have been targeted in science and medicine for hundreds of years. Since the di...

  لمعانٍ أخرى، طالع ضباب (توضيح). ضباب (رواية) Niebla   معلومات الكتاب المؤلف ميجيل دي أونامونو البلد إسبانيا اللغة الإسبانية تاريخ النشر 1914 النوع الأدبي رواية تعديل مصدري - تعديل   ضباب (بالإسبانية: Niebla) رواية من تأليف الأديب الأسباني ميجيل دي أونامونو، سنة 1907 (وتم إصد�...

 

Caste in Western Rajasthan RajpurohitRajpurohit Kesari Singh Akherajot (18th century, Marwar)ReligionsHinduismCountryIndia, PakistanRegionRajasthan, Gujrat, Maharashtra, KarnatakFeudal titleJagirdarStatusForward caste Rajpurohit[a] is a martial race of Brahmin origin residing in South Asia natively in western Rajasthan of India.[3] Their ancestors belonged to the family line of SaptRishis. They maintain traditions that are similar to both Brahmins and Rajputs.[4] They ...

 

Look up harpax in Wiktionary, the free dictionary. Roman catapult-shot grapnel For a synonym of a genus of praying mantises, see Harpagomantis. The parts of the Harpax The harpax or harpago (Koinē Greek: ἅρπαγα lit. grabber, seizer, robber; GEN ἅρπαγος harpagos)[1] was a Roman catapult-shot grapnel created by Marcus Vipsanius Agrippa for use against Sextus Pompey during the naval battles of the Sicilian revolt.[2] The harpax allowed an enemy vessel to be harpo...

Chinese politician and president of the Chinese Medical Association In this Chinese name, the family name is Ma. Ma Xiaowei马晓伟Ma in January 20201st Head of the National Health CommissionIn office19 March 2018 – 6 May 2024PremierLi KeqiangLi QiangPreceded byNew positionSucceeded byLei Haichao[1]President of the Chinese Medical AssociationIn officeDecember 2015 – May 2021Preceded byChen ZhuSucceeded byZhao Yupei Personal detailsBornDecember 1959 (age...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, independent, third-party sources. (June 2015) (Learn how and when to remove this message) The topic o...

 

Questa voce o sezione sugli argomenti attori italiani e professionisti teatrali non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Elsa Albani Elsa Albani, pseudonimo di Elsa Lapini (Genova, 1º gennaio 1921 – Torino, 24 agosto 2004), è stata un'attrice italiana. Indice 1 Biografia 2 Filmografia 2.1 Cinem...

Pour les articles homonymes, voir Tod. Tod InletGéographiePays  CanadaProvince Colombie-BritanniqueDistrict régional district régional de la CapitaleAire protégée Parc provincial Gowlland Tod (en)Coordonnées 48° 33′ 44″ N, 123° 28′ 30″ OFonctionnementPatrimonialité Provincially Recognized Heritage Site (d) (2016)modifier - modifier le code - modifier Wikidata Tod Inlet est un grau du nord-ouest de la Colombie-Britannique. Géographie I...

 

Village in West Bengal, IndiaGangajalghatiVillageGangajalghatiLocation in West Bengal, IndiaShow map of West BengalGangajalghatiGangajalghati (India)Show map of IndiaCoordinates: 23°25′12.0″N 87°07′12.0″E / 23.420000°N 87.120000°E / 23.420000; 87.120000Country IndiaStateWest BengalDistrictBankuraPopulation (2011) • Total8,708Languages • OfficialBengali, EnglishTime zoneUTC+5:30 (IST)PIN722 133 (Gangajalghati)Telephone/STD ...