1999–2000 UEFA Cup second round
|
Read other articles:
Mi WontonSemangkok mi wontonJenisMiSajianHidangan utamaTempat asalTiongkokDaerahGuangdong, Hong Kong, Indonesia, Malaysia, Singapura, Filipina dan ThailandSuhu penyajianPanasBahan utamatepung terigu, telur, daging babi, udangSunting kotak info • L • BBantuan penggunaan templat ini Media: Mi Wonton Mi wonton Hanzi tradisional: 雲吞麵 Hanzi sederhana: 云吞面 Makna harfiah: Wonton noodles Alih aksara Mandarin - Hanyu Pinyin: yúntūn miàn Min Nan - Romanisasi POJ: ...
4Q120, frg. 20, Imamat 4:27 Detail: Nama Ilahi dalam ayat 27 4Q120 (pap4QLXXLevb; VH 46; Rahlfs 802; LDAB 3452) adalah salinan dari Taurat Alkitab Ibrani dalam versi bahasa Yunani yang dikenal sebagai Septuaginta. Merupakan naskah papirus dalam bentuk gulungan. Naskah ini berdasarkan paleografi diberi tarikh abad ke-1 SM, dan terlestarikan dalam kondisi terfragmentasi. Terlepas dari varian minor, minat utama teks terletak pada penggunaan Ιαω untuk menerjemahkan tetragrammaton dalam Imamat ...
Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...
Pullman Hotels and ResortsJenisAnak perusahaanIndustriHotelDidirikan2007; 17 tahun lalu (2007)KantorpusatParis, PrancisCabang153 (2022)[1]Wilayah operasiSeluruh duniaIndukAccorSitus webpullman.accor.com Pullman Hotels and Resorts adalah merek hotel kelas atas internasional[3][4] yang dimiliki oleh Accor. Per tahun 2022, Accor mengelola 153 hotel Pullman di seluruh dunia.[1] Sejarah Cikal bakal Pullman dapat ditelusuri hingga tahun 1872, ketika Compagnie In...
Hal Roach Jr.LahirHarold Eugene Roach Jr.(1918-06-15)15 Juni 1918Los Angeles, CaliforniaMeninggal29 Maret 1972(1972-03-29) (umur 53)Santa Monica, CaliforniaSebab meninggalPneumoniaMakamCalvary Cemetery, East Los AngelesPekerjaanSutradara/ProduserTahun aktif1938–1972Orang tuaHal Roach Sr.,Marguerite Nichols Hal Roach Jr. (15 Juni 1918 – 29 Maret 1972) adalah seorang produser dan sutradara film dan televisi. Biografi Lahir di Los Angeles, putra dari pasangan pr...
Political party in Guatemala National Convergence Front Frente de Convergencia NacionalPresidentJimmy MoralesGeneral SecretaryJavier Alfonso Hernández FrancoFounded7 January 2008Dissolved8 January 2024[1]IdeologyConservatism[2][3]Nationalism[4]Christian right[5][6][7]Political positionRight-wing[8][9][10] to far-right[11]Colors BlueSeats in Congress0 / 160Websitewww.fcnnacion.comPolitics of...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Barriopedro – news · newspapers · books · scholar · JSTOR (April 2024) (Learn how and when to remove this message) Place in Castile-La Mancha, SpainBarriopedroBarriopedroShow map of Province of GuadalajaraBarriopedroShow map of Castilla-La ManchaBarriopedroShow...
Cet article est une ébauche concernant la monarchie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (mars 2016). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en ...
Keuskupan Montego BayDioecesis Sinus SereniKatolik LokasiNegara JamaikaProvinsi gerejawiProvinsi Kingston di JamaikaKoordinat18°28′02″N 77°53′44″W / 18.4673°N 77.8956°W / 18.4673; -77.8956Koordinat: 18°28′02″N 77°53′44″W / 18.4673°N 77.8956°W / 18.4673; -77.8956StatistikLuas3.878 km2 (1.497 sq mi)Populasi- Total- Katolik(per 2004)822.10014,926 (1.8%)Paroki15InformasiDenominasiKatoli...
Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Ikatan Guru Indonesia – berita · surat kabar · buku · cendekiawan · JSTOR Ikatan Guru IndonesiaLogo Ikatan Guru IndonesiaSingkatanIGITanggal pendirian26 November 2009TujuanPendidikanKantor pusatJalan Belibis ...
Mating system in which the female partner may have multiple partners This article is about polyandrous marriage practices. For polyandrous animal mating, see Polyandry in nature. Draupadi and her five brother husbands, the Pandavas. Top down, from left to right: the twins Nakula and Sahadeva stand either side of the throne on which Yudhishthira and Draupadi sit between Bhima and Arjuna. Part of a series on theAnthropology of kinship Basic concepts Family Lineage Affinity Consanguinity Marriag...
Sporting event delegationUnited States at theDeaflympicsIPC codeUSANPCUSA Deaf Sports FederationWebsitewww.usdeafsports.orgMedalsRanked 1st Gold 375 Silver 321 Bronze 363 Total 1,059 Summer appearances193519391949195319571961196519691973197719811985198919931997200120052009201320172021Winter appearances19671971197519791983198719911995199920032007201520192023 The United States has been participating at the Deaflympics from 1935[1] and it is also currently placed first in the all time De...
Hiroshi MikitaniMikitani at the 37th G8 Summit in May 2011Lahir11 Maret 1965 (umur 59)Kobe, Hyogo Prefecture, JapanKebangsaanJepangAlmamaterHitotsubashi University Harvard UniversityPekerjaanFounder, CEO & Chairman, Rakuten, Inc. (1997-Sekarang)Tahun aktif1988–SekarangKekayaan bersih$7.1 Miliar (Agustus 2017)[1]Suami/istriHaruko Mikitani (m. 1993)[2]Anak2Situs webHiroshi Mikitani Twitter account Hiroshi Mikitani English Twit...
قائمة أماكن هاري بوترمعلومات عامةصنف فرعي من location in a fictional work (en) موجود في عمل هاري بوتر من عالم خيالي عالم هاري بوتر امتياز إعلامي عالم السحرة تعديل - تعديل مصدري - تعديل ويكي بيانات هذه قائمة بالأماكن المشهوَرة والمعروفة في سلسلة هاري بوتر للمؤلفة البريطانية جيه كيه رولينغ...
Posisi litosfer (nomor 4) pada lapisan Bumi Litosfer adalah kerak bumi terluar yang tersusun atas lempeng-lempeng tektonik yang sangat sulit bergerak. Posisi litosfer berada di atas batuan terapung yang relatif mudah bergerak satu sama lain.[1] Ketebalan rata-rata litosfer adalah 100 km dengan susunan kerak bumi dan mantel. Possi litosfer berdekatan dengan astenosfer.[2] Litosfer termasuk lapisan kuat yang terletak di atas astenosfer yang lemah. Posisi litosfer membuat litosfe...
Disambiguazione – Se stai cercando altre accezioni del termine, vedi Aquilone (disambigua). Un aquilone in volo L'aquilone è un oggetto più pesante dell'aria vincolato a terra da un filo, che può volare sfruttando la forza di portanza generata dal vento. Il vento può anche essere virtuale, cioè prodotto dal movimento del pilota. Questa tecnica ne consente l'utilizzo anche in assenza di vento e conseguentemente anche in interni (indoor). Esistono diversi tipi di aquilone, ecco i più c...
American chess official (1936–2020) For the marketing expert, see Don E. Schultz. Donald D. Schultz Donald Schultz (May 13, 1936, Woodhaven, Queens, New York – April 20, 2020, New Jersey)[1] was a president and a vice-president of the United States Chess Federation (USCF). He was elected vice-president on August 14, 2005. He was defeated by the Susan Polgar-Paul Truong slate when he ran for re-election in July, 2007. He was a rated chess expert. Chess organizer and official Althou...
Network with non-trivial topological features Complex networks redirects here. For the company, see Complex Networks. Part of a series onNetwork science Theory Graph Complex network Contagion Small-world Scale-free Community structure Percolation Evolution Controllability Graph drawing Social capital Link analysis Optimization Reciprocity Closure Homophily Transitivity Preferential attachment Balance theory Network effect Social influence Network types Informational (computing) Telecommunicat...
Wood is an example of an orthotropic material. Material properties in three perpendicular directions (axial, radial, and circumferential) are different. In material science and solid mechanics, orthotropic materials have material properties at a particular point which differ along three orthogonal axes, where each axis has twofold rotational symmetry. These directional differences in strength can be quantified with Hankinson's equation. They are a subset of anisotropic materials, because the...
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. La mise en forme de cet article est à améliorer (août 2024). La mise en forme du texte ne suit pas les recommandations de Wikipédia : il faut le « wikifier ». Cet article est une ébauche concernant la politique. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. La marche du sel, en Inde, le 12 mars 1930. La résis...