Έρασμος
|
Read other articles:
Questa voce o sezione sull'argomento Campania non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Questa voce sugli argomenti Pozzuoli e geologia è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. La penisola vista da un a...
Agar perkalian matriks dapat dilakukan, matriks A perlu memiliki jumlah kolom yang sama dengan jumlah baris pada matriks B. Hasil perkalian keduanya adalah matriks dengan jumlah baris yang sama dengan matriks A dan jumlah kolom yang sama dengan matriks B. Dalam matematika, perkalian matriks adalah suatu operasi biner dari dua matriks yang menghasilkan sebuah matriks. Agar dua matriks dapat dikalikan, banyaknya kolom pada matriks pertama harus sama dengan banyaknya baris pada matriks kedua. Ma...
Muhammad Zia-ul-HaqNama dalam bahasa asli(ur) محمد ضياء الحق BiografiKelahiran12 Agustus 1924 Jalandhar Kematian17 Agustus 1988 (64 tahun)Bahawalpur Penyebab kematianKecelakaan pesawat terbang Tempat pemakamanMasjid Faisal Islamabad Defence Minister of Pakistan (en) 27 Februari 1985 – 24 Maret 1985 6è Daftar Presiden Pakistan 16 September 1978 – 17 Agustus 1988 ← Fazal Ilahi Chaudhry – Ghulam Ishaq Khan → ...
In logic, a statement which is always true This article is about tautology in formal logic. For other uses, see Tautology (disambiguation). In mathematical logic, a tautology (from Greek: ταυτολογία) is a formula or assertion that is true in every possible interpretation. An example is x=y or x≠y. Similarly, either the ball is green, or the ball is not green is always true, regardless of the colour of the ball. The philosopher Ludwig Wittgenstein first applied the term to redundan...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) بول كلينغ (بالتشيكية: Paul Kling) معلومات شخصية الميلاد 28 مارس 1929 أوبافا الوفاة 2 يناير 2005 (75 سنة) فانكوفر مكان الاعتقال معسكر أوشفيتز بيركينومع�...
artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Halaman ini berisi artikel tentang organisasi nasionalis Turki. Untuk hewan, lihat Serigala abu-abu. Grey WolvesÜlkü OcaklarıPemimpinDevlet Bah...
South Korean singer (born 1984) This article is about the South Korean singer. For her self-titled EP, see Sandara Park (EP). The native form of this personal name is Park Sandara. This article uses Western name order when mentioning individuals. In this Korean name, the family name is Park. Sandara ParkPark in September 2022Born (1984-11-12) November 12, 1984 (age 39)Busan, South KoreaOther namesDaraOccupationsSingeractresstelevision hostAgentStar Magic (2004–2007)RelativesTh...
Former American mobile network provider payLo redirects here. For the actress, see Paydin LoPachin. Virgin Mobile USACompany typeSubsidiaryIndustryWireless communicationsEntertainmentFoundedOctober 18, 2001; 22 years ago (2001-10-18)San Francisco, California, United StatesFounderRichard BransonJohn Tantum[dubious – discuss]DefunctJanuary 2020; 4 years ago (2020-01)FateMerged with Boost Mobile on February 2, 2020 (2020-...
Fenobarbital struttura Fenobarbital adalah antikonvulsan turunan barbiturat yang efektif dalam mengatasi epilepsi.[1] Nama kimia dari fenobarbital sendiri adalah asam 5-etil- 5fenilbarbiturat.[1] Karena fenobarbital merupakan salah satu obat golongan barbiturat, mekanismenya sama dengan barbiturat.[1] Barbiturat menekan korteks sensor,menurunkan aktivitas motorik, mempengaruhi fungsi serebral dan menyebabkan kantuk, efek sedasi dan hipnotik.[1] Pada dosis tingg...
Fictional character from EastEnders This article is about the 1991 EastEnders character. For the 2019 character, see Peggy Taylor (EastEnders). For the British tennis player, see Peggy Michell. For the author, see Margaret Mitchell. Soap opera character Peggy MitchellEastEnders characterBarbara Windsor as Peggy Mitchell (2008)Portrayed byJo Warne (1991)Barbara Windsor (1994–2016)Jaime Winstone (2022 flashback)Duration1991, 1994–2010, 2013–2016, 2022First appearanceEpisode 6503...
Латинская Библия (1407, Англия) Страница нидерландско-немецкого словаря (1759). Нидерландский текст набран антиквой, а немецкий — готическим шрифтом О письме готского языка см. готское письмо Готи́ческое письмо́ — семейство почерков латинского письма эпохи Средневеко...
German racing driver Luca StolzStolz at the 2019 24 Hours of SpaNationality GermanBorn (1995-07-29) 29 July 1995 (age 28)Kirchen, GermanyADAC GT Masters careerDebut season2014Current teamToksport WRTRacing licence FIA PlatinumCar number22Former teamsTeam ZakspeedGRT Grasser Racing TeamHTP MotorsportStarts104Wins2Podiums20Poles6Fastest laps3Previous series2011201220132013ADAC Formel MastersATS Formel 3 CupFrench GT ChampionshipPorsche Carrera Cup GermanyChampionship titles20162018GT ...
Part of the Canterbury Tales For the 1913 film, see The Old Monk's Tale. The Monk's Tale is one of the Canterbury Tales by Geoffrey Chaucer. The Monk's tale to the other pilgrims is a collection of 17 short stories, exempla, on the theme of tragedy. The tragic endings of these historical figures are recounted: Lucifer, Adam, Samson, Hercules, Nebuchadnezzar, Belshazzar, Zenobia, Pedro of Castile, Peter I of Cyprus, Bernabò Visconti, Ugolino of Pisa, Nero, Holofernes, Antiochus, Alexander the...
MissundaztoodAlbum studio karya P!nkDirilis20 November 2001 (2001-11-20)Direkam2001GenrePop, R&B, Rrock, pop rockDurasi55:20LabelAristaProduserDamon Elliott, Dallas Austin, Linda Perry, Scott StorchKronologi P!nk Can't Take Me Home (2000)Can't Take Me Home2000 Missundaztood (2001) Try This (2003)Try This2003 Singel dalam album Missundaztood Get the Party StartedDirilis: 9 Oktober 2001 Don't Let Me Get MeDirilis: 19 Februari 2002 Just Like a PillDirilis: 10 Juni 2002 Family Portra...
此生者传记没有列出任何参考或来源。 (2023年1月2日)请协助補充可靠来源,针对在世人物的无法查证的内容将被立即移除。 丹·克雷文个人资料身高1.84米(6英尺1⁄2英寸)体重75公斤(165磅)运动国家/地区納米比亞运动單車项目公路賽最近更新于:2012年9月 丹·克雷文(1983年2月1日—)是一名納米比亞單車運動員。2008年曾獲得非洲公路單車賽冠軍,2012年代表國家參加201...
Roland MT-32 Roland MT-32 adalah synthesizer MIDI (modul suara) yang dipasarkan pada tahun 1987 oleh Roland Corporation. Fitur Sama seperti pendahulunya, Roland D-50, MT-32 menggunakan sintesis Linear Arithmetic (LA), sintesis yang berbasis sampel suara yang dikombinasikan dengan sintesis subtraktif, untuk menghasilkan suara. Dengan sampel yang digunakan untuk serangan, dan perkusi, sedangkan sintesis biasa bertugas memberikan suara sebagai bentuk sustain. MT-32 meliputi pustaka 128 suara (pr...
Rodney So'oialoDati biograficiPaese Samoa Occ. Altezza190 cm Peso107 kg FamiliariSteven So'oialo (fratello) Rugby a 15 Union Nuova Zelanda RuoloTerza linea Squadra Honda Heat Ritirato2012 CarrieraAttività provinciale 2000-10 Wellington64 (55) Attività di club[1] 2001-11 Hurricanes101 (50)2011- Honda Heat2 (0) Attività da giocatore internazionale 2002-09 Nuova Zelanda62 (30) Palmarès internazionale3º posto Coppa del Mondo 20031. A partire dalla stagione ...
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages) This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Parliamentary committees in the Riksdag – news · newspapers · books · scholar · JSTOR (March 2018) (Learn how and when to remove this message) This article needs ...
Bandy Jogadores de bandy suecos em janeiro 2011 Federação desportiva mais alta Federação Internacional de Bandy Outros nomes Futebol de inverno Jogado pela primeira vez 1813 em Cambridgeshire, Inglaterra Características Contacto Permitido (limitado) Membros de equipa 11 jogadores de campo Género misto Não, competições separadas Tipo Desporto de equipa, desporto de inverno Equipamento Bola de bandu, stick de bandy, skates, roupa e acessórios de proteção Local Campo de gelo, a...
Quadrilateral with two equal sides perpendicular to the base Saccheri quadrilaterals A Saccheri quadrilateral is a quadrilateral with two equal sides perpendicular to the base. It is named after Giovanni Gerolamo Saccheri, who used it extensively in his 1733 book Euclides ab omni naevo vindicatus (Euclid freed of every flaw), an attempt to prove the parallel postulate using the method reductio ad absurdum. Such a quadrilateral is sometimes called a Khayyam–Saccheri quadrilateral to credit P...