Die ersten experimentellen Versuchsreaktoren aus den 1940er und 1950er Jahren, aber auch einige kommerzielle Leistungsreaktoren, vor allem in Großbritannien, Frankreich, Kanada und Indien, verwendeten Natururan. In Deutschland wurden der Forschungsreaktor 2, das Kernkraftwerk Niederaichbach und der Mehrzweckforschungsreaktor Karlsruhe mit Natururan betrieben. Heute (2020) wird natürliches Uran zur Energiegewinnung noch in etwa 50 Reaktoren vom CANDU-Typ eingesetzt. Der indische IPHWR ist in vielerlei Hinsicht eine Weiterentwicklung des CANDUs und macht den Großteil der restlichen Natururanreaktoren, welche noch als solche in Betrieb sind, aus. Beim Kernkraftwerk Atucha sowie beim RBMK ist die ursprünglich geplante Nutzung von Natururan entweder im Designprozess oder im Laufe des Betriebs aufgegeben worden. Gründe sind verbesserte Sicherheit (RBMK) und höherer Abbrand (Atucha).
Physikalischer Hintergrund
In natürlichem Uran liegt der Anteil des leicht spaltbaren Uran-Isotops 235U bei etwa 0,7 %. In einem Reaktor mit Natururanbrennstoff lässt sich Kritikalität, also eine selbsterhaltende Kernspaltungs-Kettenreaktion, nicht mit jeder, sondern nur mit bestimmten Moderatorsubstanzen erreichen; mit dem wirtschaftlichsten Moderator und Kühlmittel, gewöhnlichem Wasser (Leichtwasser), gelingt es nicht, weil darin zu viele Neutronen durch Absorption verloren gehen. Alle Natururanreaktoren sind daher entweder Schwerwasserreaktoren oder graphitmoderierte Reaktoren. Theoretisch wäre auch Beryllium als Moderator denkbar, ist jedoch aufgrund seines hohen Preises bisher nie zu nennenswertem Einsatz in dieser Rolle gekommen. Als Brennstoff kommt entweder reines Uranmetall (U) oder Urandioxid (UO2) zum Einsatz.[1]
Die meisten heutigen Kernkraftwerke verwenden angereichertes Uran mit einem 235U-Anteil von 0,7 % bis 2 %, bei einigen Reaktortypen bis zu 20 %. Hochangereichertes Uran (20 % bis 93 % 235U) wird in wenigen Forschungsreaktoren, in Reaktorschiffen und in Kernwaffen eingesetzt.[2] In „abgebrannten“ Brennelementen, wie sie aus einem Leichtwasserreaktor entnommen werden, nachdem sie dort keine ökonomisch und sicherheitstechnisch vertretbare Kettenreaktion mehr aufrechterhalten können, befindet sich ein höherer Anteil spaltbares Material als in Natururan. Dies ist in erster Linie Plutonium-239, welches jedoch aufgrund des geringeren Anteils an verzögerten Neutronen besondere Handhabung verlangt. Allerdings ist auch der Anteil an 235U auch im „abgebrannten“ Brennstoff noch höher als in natürlichem Uran. Der „klassische“ Weg, diese potentielle Energiequelle zu „recyclen“ ist die Herstellung von MOX-Brennelementen, welche sowohl Plutonium als auch Uran enthalten. Denkbar – und in Versuchen bereits praktiziert – ist aber auch die Verwendung des „reprozessierten Urans“ (der Urananteil des „abgebrannten“ Brennstoffes nach chemischer Abtrennung von Spaltprodukten, Plutonium und minoren Actinoiden) oder sogar der – gegebenenfalls geringfügig bearbeiteten oder von Neutronengiften befreiten – abgebrannten Brennelemente als solchen. Da die Voraussetzungen für einen derartigen Brennstoffkreislauf (Vorhandensein großer Mengen abgebrannten Brennstoffs aus Leichtwasserreaktoren und Verfügbarkeit von Natururanreaktoren) global erst nach dem Preisverfall des Urans in den 1970er Jahren aufgetreten ist, wird erst seit den 1990er Jahren verstärkt in diesem Bereich geforscht, da das Problem des Atommülls immer mehr Beachtung findet. Hervor getan hat sich hier vor allem Südkorea, ein Land, welches sowohl Leichtwasserreaktoren als auch Natururanreaktoren betreibt.[3] Reprozessiertes Uran kann ebenfalls einer weiteren Anreicherung zugeführt werden, dies ist jedoch trotz des höheren 235U Gehalts wenig attraktiv, da 236U (in natürlichem Uran quasi nicht nachweisbar) und 234U (in natürlichem Uran mit einem Anteil von 55 ppm vertreten, in reprozessiertem Uran durch Anreicherung und (n,2n) Reaktionen mit höheren Anteilen verfügbar) mit dem 235U angereichert werden und die Parameter des Brennstoffs negativ beeinflussen.
Im Naturreaktor Oklo und weiteren Uranlagerstätten in Gabun fanden bereits vor etwa zwei Milliarden Jahren kritische Kernspaltungs-Kettenreaktionen mit Natururan statt. Damals lag der Anteil von 235U in natürlichem Uran bei etwa 3 %, so dass die Kritikalität auch bei Moderation mit normalem Wasser zustande kommen konnte.[4]
Kommerzielle Leistungsreaktoren
Die folgenden Kernkraftwerke wurden bzw. werden mit Natururan betrieben. Bei Kernkraftwerken mit mehreren Blöcken wird unter „Betriebsbeginn“ derjenige des ersten Blocks und unter „Betriebsende“ derjenige des letzten Blocks angegeben, unter „Leistung“ diejenige des leistungsstärksten Blocks.
Magnox-Reaktoren
Magnox-Reaktoren (engl.Magnesium Alloy Graphite Moderated Gas Cooled Uranium Oxide Reactor) sind graphit-moderierte Kernreaktoren, die mit Kohlenstoffdioxid (CO2) gekühlt werden. Die Brennelemente bestehen aus Natururan in metallischer Form, das mit einer Magnesium-Aluminium-Legierung umhüllt ist.[5]
Magnox-Reaktoren wurden in Großbritannien entwickelt und gehören zu den ersten kommerziell genutzten Kernreaktoren der Welt. Das Design wurde in 26 britischen Reaktoren sowie in zwei Kernkraftwerken in Italien und Japan verwirklicht. Heute ist kein Magnox-Reaktor mehr in Betrieb, der letzte verbleibende Reaktor wurde am Kernkraftwerk Wylfa am 30. Dezember 2015 abgeschaltet. Nordkorea hat einen Reaktor, der auf dem Magnox-Design basiert, für sein Kernwaffenprogramm zur Produktion von waffenfähigem Plutonium verwendet.[6][7]
Als Nachfolgemodell für den Magnox-Reaktor wurde in Großbritannien in den 1960er Jahren der Advanced Gas-cooled Reactor entwickelt, der jedoch auf etwa 3 % angereichertes Urandioxid als Kernbrennstoff verwendet.
Die UNGG-Reaktoren (französischUranium Naturel Graphite Gaz), die in den 1950er und 1960er Jahren in Frankreich entwickelt wurden, waren vom Design her ähnlich aufgebaut wie die Magnox-Reaktoren und wurden mit Graphit moderiert sowie mit Kohlenstoffdioxid gekühlt. Die Brennelemente in UNGG-Reaktoren bestanden ebenfalls aus Natururan, sie wurden hier allerdings mit einer Magnesium-Zirkonium-Legierung umhüllt. UNGG-Reaktoren wurden in acht französischen Kernreaktoren und in dem spanischen Kernkraftwerk Vandellòs eingesetzt, keiner der Reaktoren ist mittlerweile mehr in Betrieb.[8]
Das UNGG-Design wurde in Frankreich durch Druckwasserreaktoren abgelöst, die alle mit angereichertem Uran betrieben werden.
Der CANDU-Reaktor wurde in Kanada entwickelt. Hauptgrund für die Entwicklung dieses Reaktortyps war, dass Kanada nicht in der Lage war, Uran anzureichern, und die USA (als Land des Manhattan Projects) bei dieser Dual Use Technologie seinerzeit nicht zum Technologietransfer bereit waren. CANDU-Reaktoren nutzen schweres Wasser als Moderator und auch (in einem getrennten Kreislauf mit Überdruck) als Kühlmittel. Als Kernbrennstoff kann Natururan, abgebrannter Brennstoff aus einem Leichtwasserreaktor[9] oder leicht angereichertes Uran verwendet werden.[10]
Der Reaktortyp wird in vielen Ländern eingesetzt, vor allem in Kanada, aber auch in Argentinien, China, Pakistan, Rumänien und Südkorea. 34 der insgesamt 36 CANDU-Reaktoren sind heute noch in Betrieb.
Der Advanced CANDU Reactor ist eine Weiterentwicklung des CANDU-Designs, der leicht angereichertes Uran verwendet. Kein Reaktor dieses Typs ist jemals gebaut worden.
Die meisten Kernreaktoren in Indien sind Schwerwasser-Druckreaktoren (engl.Pressurized Heavy-Water Reactor), die mit Natururan betrieben werden und auf dem CANDU-Design basieren. Alle 16 Reaktoren sind noch in Betrieb.[11]
Ebenfalls mit Natururan betrieben wurden in Deutschland das Kernkraftwerk Niederaichbach, ein schwerwasser-moderierter Druckröhrenreaktor mit CO2-Gaskühlung, und der Mehrzweckforschungsreaktor Karlsruhe, ein mit schwerem Wasser moderierter und gekühlter Druckröhrenreaktor. Beide Anlagen sind mittlerweile stillgelegt.[12] Der Mehrzweckforschungsreaktor diente als Prototyp für das argentinischeKernkraftwerk Atucha 1, das heute noch in Betrieb ist und mittlerweile aus Effizienzgründen leicht (zu 0,85 %) angereichertes Uran verwendet.
Der Reaktor R3 im Kernkraftwerk Ågesta in Schweden war ein Druckkesselreaktor, der als Teil der sogenannten „schwedischen Linie“ entwickelt wurde, die eine Unabhängigkeit vom Ausland durch Verwendung einheimischer, nicht angereicherter Uranbrennelemente zum Ziel hatte; die späteren schwedischen Kernkraftwerke waren jedoch Leichtwasserreaktoren, die mit angereichertem Uran betrieben wurden. Der Reaktor A1 im tschechoslowakischenKernkraftwerk Bohunice war ein gasgekühlter Prototyp-Druckröhrenreaktor, der gemeinsam mit Russland entwickelt und ebenfalls mit Natururan betrieben wurde. Diese beiden Reaktoren sind ebenfalls mittlerweile stillgelegt.
Wurde mit französischer Hilfe baugleich zum Reaktor G1 errichtet. Die israelische Regierung hat bislang weder bestätigt noch dementiert, dass es sich dabei um eine militärische Anlage zur Herstellung von Plutonium handelt.[34]
Der Experimental Power Reactor wurde ohne britische Unterstützung basierend auf den freigegebenen Bauplänen der Magnox-Reaktoren des Kernkraftwerks Calder Hall gebaut, er wurde auch zur Stromerzeugung (etwa 5 MWe) eingesetzt.[36]
↑Nuclear Power Reactors. World Nuclear Association, April 2009, archiviert vom Original (nicht mehr online verfügbar) am 12. Februar 2013; abgerufen am 26. Dezember 2009.Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.world-nuclear.org
↑Nader M. A. Mohamed, Alya Badawi: Effect of DUPIC Cycle on CANDU Reactor Safety Parameters. In: Nuclear Engineering and Technology. Band48, Nr.5, Oktober 2016, S.1109–1119, doi:10.1016/j.net.2016.03.010.
↑Alex P. Meshik: Natürliche Kernreaktoren. In: Spektrum der Wissenschaft. Band2006/06, 2006, S.84–90 (spektrum.de).
↑Magnox reactor. European Nuclear Society, abgerufen am 25. Dezember 2009.
↑Nader M. A. Mohamed, Alya Badawi: Effect of DUPIC Cycle on CANDU Reactor Safety Parameters. In: Nuclear Engineering and Technology. Band48, Nr.5, 1. Oktober 2016, S.1109–1119, doi:10.1016/j.net.2016.03.010.
↑CANDU Reactors. CANDU Owners Group Inc., archiviert vom Original (nicht mehr online verfügbar) am 25. Februar 2012; abgerufen am 25. Dezember 2009.Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.candu.org
↑ abcRodney W. Jones, Mark G. McDonough: Tracking Nuclear Proliferation: A Guide in Maps and Charts, 1998. Carnegie Endowment for International Peace, 1998, 6. India Map and Chart (web.archive.org [PDF; 116kB; abgerufen am 27. September 2021]).
↑Harwell Achievements. Research Sites Restoration, archiviert vom Original (nicht mehr online verfügbar) am 17. Februar 2015; abgerufen am 28. Dezember 2009 (englisch).Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.research-sites.com
↑Werner Heisenberg: Über die Arbeiten zur technischen Ausnutzung der Atomkernenergie in Deutschland. In: Naturwissenschaften. Nr.33, 1946, S.325–329.
↑ZEEP. Canadian Nuclear Association, 2008, archiviert vom Original (nicht mehr online verfügbar) am 13. März 2011; abgerufen am 25. Dezember 2009.Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.cna.ca
↑National Research Universal. Canadian Nuclear Association, 2008, archiviert vom Original (nicht mehr online verfügbar) am 18. Oktober 2009; abgerufen am 25. Dezember 2009.Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.cna.ca
↑Geschichte der Kernforschung. Informationskreis Kernenergie, archiviert vom Original (nicht mehr online verfügbar) am 28. Dezember 2009; abgerufen am 25. Dezember 2009.Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.kernenergie.de
↑David Wright, Lisbeth Gronlund: A History of China’s Plutonium Production. In: Science and Global Security. Nr.11, 2003 (englisch, ucsusa.org [PDF; 239kB]).
↑Nuclear Power in Korea. World Nuclear Association, 16. Dezember 2009, archiviert vom Original (nicht mehr online verfügbar) am 11. Mai 2012; abgerufen am 26. Dezember 2009.Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.world-nuclear.org
↑Pakistan’s Indigenous Nuclear Reactor Starts Up. Islamabad The Nation, 13. April 1998.