Mykotoxine (auch „Schimmelpilzgifte“) sind in Agrarprodukten oder Lebensmitteln enthaltene, von Pilzen gebildete sekundäre Stoffwechselprodukte. Im Unterschied dazu werden die toxischen Inhaltsstoffe von Großpilzen als Pilzgifte bezeichnet. Mykotoxine können bei Wirbeltieren bereits in geringsten Mengen verschiedene Giftwirkungen entfalten. Eine hierdurch verursachte Erkrankung wird Mykotoxikose genannt.
Seit Menschengedenken werden schimmelbefallene Lebensmittel und damit Mykotoxine verzehrt.
Seit 1960 machte man sich darüber erstmals ernsthafte Gedanken, als in England tausende Puten an verschimmeltem Erdnussschrot starben. Die intensive Suche nach den giftigen Substanzen führte dann zur Entdeckung der Aflatoxine. In der UdSSR trat während des Zweiten Weltkrieges eine Erkrankung auf, die eine Hemmung der Bildung von weißen Blutkörperchen zur Folge hatte und auf verschimmelter Hirse und verschimmeltem Weizen beruhte. Erst nach Jahren wurde das die Erkrankung verursachende Mykotoxin, das T-2-Toxin aus der Gruppe der von Fusarien gebildeten Trichothecene, entdeckt, das in russischen Getreideproben mit einer Konzentration von bis zu 2,5 % vorkam.
Vorkommen
Es sind inzwischen etwa 200 verschiedene Toxine bekannt, die von über 300 Pilzarten produziert werden,[1] wobei die Produktion eines bestimmten Toxins auf wenige bestimmte Arten beschränkt sein kann, aber auch von vielen Arten mehrerer Gattungen bewerkstelligt werden kann. Die Optimalbedingungen für die Bildung des Toxins und das Wachstum des Schimmelpilzes brauchen nicht notwendigerweise übereinzustimmen. Die meisten Mykotoxine sind sehr widerstandsfähig gegenüber Hitze- und Säurebehandlung.
Die Bildung von Mykotoxinen unterliegt einer ausgeprägten regionalen wie saisonalen Schwankungsbreite und ist abhängig vom Nahrungsangebot, Wassergehalt in Substrat und umgebender Luft (Luftfeuchte), Temperatur, pH-Wert und Interaktionen mit anderen Pilzen. Für die Giftbildung werden Substrate bevorzugt, die reich an Kohlenhydraten komplexer Zusammensetzung sind.[2]
Der Mensch ist hauptsächlich durch Kontaminationen in Lebensmitteln bedroht. Alle verschimmelten Nahrungsmittel können Mykotoxine enthalten.
Sekundärkontamination: Lagernde Lebensmittel verschimmeln (z. B. Aspergillus oder Penicillium spp.)
Carry over: Nutztiere nehmen verschimmelte Futtermittel (z. B. Mais, Weizen, Soja, Palmkernexpeller) auf[3] und geben die enthaltenen Gifte an die Produkte weiter: Milch, Eier, Fleisch
Die FAO schätzt, dass ca. 25 % der Welt-Nahrungsproduktion Mykotoxine enthalten.
Am häufigsten belastet mit Fusarientoxinen sind Getreide (insbesondere Mais und Weizen).
Betroffen von Aflatoxin-Befall sind häufig landwirtschaftliche Produkte aus tropischen und subtropischen Gebieten, da der Pilz Aspergillus flavus erst ab Temperaturen von 25 bis 40 °C gut wächst. Betroffen sind dabei hauptsächlich Mais, sowie ölhaltige Samen und Nüsse, wie z. B. Pistazien, Erdnüsse, Mandeln und Paranüsse. In pflanzlichen Nahrungsergänzungsmitteln werden auch Mykotoxine nachgewiesen, in Mariendistelextrakten wurden beispielsweise bis zu 37 mg pro kg gefunden.[4]
Wirkung
Mykotoxine können bei Menschen und bei Tieren bereits in geringen Konzentrationen toxische Wirkungen zeigen.
Mykotoxine können entweder aufgrund einer ähnlichen Molekularstruktur oder nach den sie produzierenden Schimmelpilzgattungen zu Stoffgruppen zusammengefasst werden:
Streng genommen müssten die Mutterkornalkaloide zu den Pilzgiften gerechnet werden. Denn der Produzent, das Mutterkorn (Claviceps purpurea), gehört zu den Großpilzen, da im Frühjahr kleine, aber deutlich erkennbare Fruchtkörper aus dem Sklerotium wachsen.
Ethanol (Ethylalkohol), das bei der anaeroben Metabolisierung von Zuckern durch manche Hefepilze (speziell Saccharomyces cerevisiae) entsteht, zählt zu den primären Stoffwechselprodukten und ist daher im engeren Sinn nicht zu den Mykotoxinen zu zählen.
Nachweismethoden
Für die Mykotoxin-Analytik gibt es einige physikalisch-chemische Methoden:
Bei diesen Untersuchungen werden die Substanzen mit organischen Lösungsmitteln aus dem Untersuchungsmaterial herausgelöst und in aufwändigen Verfahren soweit gereinigt und konzentriert, dass ein eindeutiger Nachweis ohne störende Substanzen möglich ist.
Die HPLC/MS- und GC/MS-Kopplungen ermöglichen sowohl die sichere Identifizierung als auch Quantifizierung der verschiedenen Mykotoxine. Zur Gaschromatographie werden in der Regel Derivate (z. B. Trimethylsilylderivate) eingesetzt.[6] Bei Einsatz der HPLC/MS-Kopplung können auch underivatisierte Mykotoxine vermessen werden. Als Ionisierungsmethoden sind sowohl die Elektronenstoßionisierung (EI) als auch die Chemische Ionisierung (CI) mit Quadrupol- und Ionenfallen-Massenspektrometern möglich.
Für die Schnellanalytik bei der Rohstoffannahme in Lebensmittel- und Futtermittelbetrieben (speziell für DON und ZEA) gibt es immunologischen ELISA-Verfahren und Mykotoxin-Streifentests („Dipsticks“), die nach der Methode von „Kapillardiffusionstests“ oder „flow-through-Tests“ arbeiten. Neuerdings gibt es außerdem homogene Rapid Kinetic Assays, welche als Präzisionsschnelltests eine genaue quantitative Bestimmungen in unter 15 Minuten ermöglichen.[7]
↑Habermehl: Die Bedeutung von Mykotoxikosen für Mensch und Tier. In: Deutsche tierärztliche Wochenschrift. 1989, S. 335–338.
↑Thalmann: Bedingungen für die Bildung von Mykotoxinen in Futtermitteln. In: Deutsche tierärztliche Wochenschrift. 1989, Vol 96, S. 341–343.
↑Mykotoxine in Futtermitteln, Martin Felsner und Katja Schwertl-Banzhaf, Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, 16. November 2010.
↑Z. Veprikova, M. Zachariasova, Z. Dzuman, A. Zachariasova, M. Fenclova, P. Slavikova, M. Vaclavikova, K. Mastovska, D. Hengst, J. Hajslova: Mycotoxins in Plant-Based Dietary Supplements: Hidden Health Risk for Consumers. In: Journal of Agricultural and Food Chemistry. 63. Jahrgang, Nr.29, 2015, S.6633–43, doi:10.1021/acs.jafc.5b02105, PMID 26168136 (englisch): “The highest mycotoxin concentrations were found in milk thistle-based supplements (up to 37 mg/kg in the sum).”
↑H. U. Melchert, E. Pabel: Reliable identification and quantification of trichothecenes and other mycotoxins by electron impact and chemical ionization-gas chromatography-mass spectrometry, using an ion-trap system in the multiple mass spectrometry mode – Candidate reference method for complex matrices. In: Journal of Chromatography. (2004), A 1056, S. 195–199, PMID 15595550.
↑Elise Teichmann, Frank Mallwitz: Industrielle Qualitätskontrolle bei Hafer, Weizen und anderen Getreidesorten mit DON- und T-2/HT-2-Analytik. In: Mühle + Mischfutter. 150. Jahrg. (2013), Heft 11, S. 332–336 ISSN0027-2949.
↑Verordnung (EU) 2023/915 der Kommission vom 25. April 2023 über Höchstgehalte für bestimmte Kontaminanten in Lebensmitteln und zur Aufhebung der Verordnung (EG) Nr. 1881/2006