Lineare Algebra

Die lineare Algebra (auch Vektoralgebra) ist ein Teilgebiet der Mathematik, das sich mit Vektorräumen beschäftigt. Ähnlich wie in anderen Teilgebieten der Mathematik, sind die strukturerhaltenden Abbildungen, welche in der linearen Algebra die linearen Abbildungen sind, von besonderem Interesse. Diese können durch Matrizen repräsentiert werden. Die lineare Algebra schließt insbesondere auch die Betrachtung von linearen Gleichungssystemen mit ein.

Vektorräume und deren lineare Abbildungen sind ein wichtiges Hilfsmittel in vielen Bereichen der Mathematik. Außerhalb der reinen Mathematik finden sich Anwendungen unter anderem in den Naturwissenschaften, in der Informatik und in der Wirtschaftswissenschaft (zum Beispiel in der Optimierung).

Die lineare Algebra entstand aus zwei konkreten Anforderungen heraus: einerseits dem Lösen von linearen Gleichungssystemen, andererseits der rechnerischen Beschreibung geometrischer Objekte, der sogenannten analytischen Geometrie (daher bezeichnen manche Autoren lineare Algebra als lineare Geometrie).

Geschichte

Die Anfänge der Algebra und somit auch der Begriff selbst gehen weitestgehend auf den persisch-choresmischen Mathematiker, Astronomen, Geographen und Universalgelehrten Al-Chwarizmi zurück, der aufgrund der Islamisierung im Iran seine Werke ins Arabische übersetzen musste und so auf den Namen „al-jabr“ kam. Daraus leitet sich der Begriff der Algebra her.[1]

Während die Entwicklung der Algebra bereits im alten Ägypten begann, entstand die lineare Algebra als eigenständiges Teilgebiet erst im 17. Jahrhundert mit der Theorie der Determinante. Die Entwicklung dieser Theorie wurde unabhängig voneinander von Gottfried Wilhelm Leibniz und Seki Takakazu gestartet. Im Jahr 1750 veröffentlichte dann Gabriel Cramer die nach ihm benannte cramersche Regel. Damit war man erstmals im Besitz einer Lösungsformel für viele lineare Gleichungssysteme.[2]

Die Geschichte der modernen linearen Algebra reicht zurück bis in die Jahre 1843 und 1844. 1843 erdachte William Rowan Hamilton (von dem der Begriff Vektor stammt) mit den Quaternionen eine Erweiterung der komplexen Zahlen. 1844 veröffentlichte Hermann Graßmann sein Buch Die lineale Ausdehnungslehre. Arthur Cayley führte dann 1857 mit den -Matrizen eine der grundlegendsten algebraischen Ideen ein.

Ab dem 20. Jahrhundert befasste man sich dann mehrheitlich mit dem Begriff des Vektorraums. Insbesondere die Mathematiker August Ferdinand Möbius, Constantin Carathéodory und Hermann Weyl leisteten hierfür die Vorarbeit. So wurde beispielsweise festgestellt, dass lineare Abbildungen zwischen endlichdimensionalen Vektorräumen durch Matrizen beschrieben werden können. Auf dieser Erkenntnis basierend konnte Stefan Banach als Erster eine axiomatische Definition für reelle Vektorräume angeben.

Lineare Gleichungssysteme

Als lineares Gleichungssystem bezeichnet man eine Zusammenfassung von Gleichungen der Art

Derartige Gleichungssysteme erhält man aus vielen alltäglichen Fragestellungen, beispielsweise:

In welchem Verhältnis muss man eine 30%ige Lösung (entspricht ) und eine 60%ige Lösung (entspricht ) mischen, um eine 40%ige Lösung zu erhalten?

Der wesentliche Abstraktionsschritt der linearen Algebra besteht nun darin, die linken Seiten als eine Funktion der Unbekannten (in diesem Fall die Menge der jeweiligen Lösungen) aufzufassen:

Dann wird die Lösung des Gleichungssystems zu der Aufgabe: Finde ein , sodass

gilt. Das Übereinanderschreiben ist dabei lediglich ein Formalismus, um mit mehr als einer Zahl gleichzeitig umgehen zu können.

Statt schreibt man auch einfach die relevanten Zahlen in Form eines Rechtecks auf und nennt das Objekt eine Matrix:

Man stellt fest, dass die Funktion spezielle Eigenschaften hat, sie ist eine lineare Abbildung. Ist eine Lösung für das Gleichungssystem , und eine Lösung des Gleichungssystems , so ist

eine Lösung von . Man kann das auch in der Form schreiben. Ist weiter irgendeine reelle Zahl, so ist ; dabei ist

.

Analytische Geometrie

Der andere Ursprung der linearen Algebra findet sich in der rechnerischen Beschreibung des 2- und 3-dimensionalen (euklidischen) Raumes, auch „Anschauungsraum“ genannt. Mit Hilfe eines Koordinatensystems können Punkte im Raum durch Tripel von Zahlen beschrieben werden. Der Abbildungstyp der Verschiebung führt zum Begriff des Vektors, der Richtung und Betrag der Verschiebung angibt. Viele physikalische Größen, beispielsweise Kräfte, haben stets diesen Richtungsaspekt.

Da man auch Vektoren durch Zahlentripel beschreiben kann, verschwimmt die Trennung zwischen Vektoren und Punkten: Einem Punkt entspricht sein Ortsvektor, der vom Koordinatenursprung nach zeigt.

Viele der in der klassischen Geometrie betrachteten Abbildungstypen, beispielsweise Drehungen um Achsen durch den Ursprung oder Spiegelungen an Ebenen durch den Ursprung, gehören zur Klasse der linearen Abbildungen, die schon oben erwähnt wurde.

Vektorräume und lineare Algebra

Der Begriff des Vektorraumes entsteht als Abstraktion der obigen Beispiele: Ein Vektorraum ist eine Menge, deren Elemente Vektoren genannt werden, zusammen mit

Diese Addition und die Skalarmultiplikation müssen noch einige einfache Eigenschaften erfüllen, die auch für die Vektoren im Anschauungsraum gelten.

Man könnte sagen, dass Vektorräume gerade so definiert sind, dass man von linearen Abbildungen zwischen ihnen sprechen kann.

In gewisser Weise ist der Begriff des Vektorraums für die lineare Algebra bereits zu allgemein. Jedem Vektorraum ist eine Dimension zugeordnet, beispielsweise hat die Ebene Dimension und der Anschauungsraum die Dimension . Es gibt aber Vektorräume, deren Dimension nicht endlich ist, wodurch viele der bekannten Eigenschaften verloren gehen. Es hat sich aber als sehr erfolgreich erwiesen, unendlichdimensionale Vektorräume mit einer zusätzlichen topologischen Struktur auszustatten; die Untersuchung topologischer Vektorräume ist Gegenstand der Funktionalanalysis.

(Der Rest dieses Artikels beschäftigt sich mit dem Fall endlicher Dimensionen.)

Wichtige Sätze und Ergebnisse

Jeder Vektorraum hat (unter der Annahme, dass das Auswahlaxiom gilt,) mindestens eine Basis. Die Basis kann endlich oder unendlich viele Elemente enthalten.

Falls ein Vektorraum eine Basis aus endlich vielen Elementen hat, haben alle Basen dieses Vektorraumes endlich viele Elemente und die Anzahl der Elemente ist für alle Basen gleich. Falls ein Vektorraum eine Basis aus unendlich vielen Elementen hat, haben alle Basen dieses Vektorraumes unendlich viele Elemente. Deshalb ist es sinnvoll, von der Dimension eines Vektorraumes als die Anzahl der Elemente einer Basis sowie von endlich- und unendlich-dimensionalen Vektorräumen zu sprechen. Für Summen und Durchschnitte von Untervektorräumen gilt die Dimensionsformel und für die Dimensionen von Faktorräumen eines endlich-dimensionalen Vektorraumes die Formel .

Jede lineare Abbildung ist durch die Angabe der Bilder einer Basis von eindeutig festgelegt. Für lineare Abbildungen gelten der Homomorphiesatz und der Rangsatz. Lineare Abbildungen können bezüglich fest gewählter Basen durch Matrizen dargestellt werden. Dabei entspricht der Hintereinanderausführung von linearen Abbildungen die Multiplikation ihrer Darstellungsmatrizen.

Ein lineares Gleichungssystem mit , und ist genau dann lösbar, wenn der Rang der Matrix gleich dem Rang der erweiterten Koeffizientenmatrix ist. In diesem Fall ist die Lösungsmenge des Systems ein affiner Unterraum von der Dimension . Für nicht zu große Gleichungssysteme können die Rangbestimmung und die Berechnung des Lösungsraumes mit dem Gaußschen Eliminationsverfahren durchgeführt werden.

Eine lineare Abbildung (also ein Endomorphismus) eines endlichdimensionalen Vektorraumes ist bereits invertierbar, wenn sie injektiv oder surjektiv ist. Dies ist wiederum genau dann der Fall, wenn ihre Determinante ungleich null ist. Hieraus folgt, dass die Eigenwerte eines Endomorphismus genau die Nullstellen seines charakteristischen Polynoms sind. Eine weitere wichtige Aussage über das charakteristische Polynom ist der Satz von Cayley-Hamilton.

Ein Endomorphismus (beziehungsweise eine quadratische Matrix) ist genau dann diagonalisierbar, wenn das charakteristische Polynom in Linearfaktoren zerfällt und für jeden Eigenwert dessen algebraische Vielfachheit gleich der geometrischen Vielfachheit, also die Nullstellenordnung des Eigenwerts im charakteristischen Polynom gleich der Dimension des zugehörigen Eigenraumes ist. Äquivalent dazu ist die Existenz einer Basis des Vektorraumes, die aus Eigenvektoren der linearen Abbildung besteht. Endomorphismen, deren charakteristisches Polynom in Linearfaktoren zerfällt, sind immerhin noch trigonalisierbar, können also durch eine Dreiecksmatrix dargestellt werden. Ein etwas tiefer liegendes Ergebnis ist, dass die darstellende Matrix dabei sogar in jordansche Normalform gebracht werden kann.

In Vektorräumen, auf denen zusätzlich ein Skalarprodukt gegeben ist, wird durch eine Norm definiert. In diesen Skalarprodukträumen existieren stets Orthonormalbasen, die etwa durch das Gram-Schmidtsche Orthonormalisierungsverfahren konstruiert werden können. Nach dem Projektionssatz kann man in diesen Räumen die Bestapproximation aus einem Untervektorraum durch orthogonale Projektion bestimmen.

Bezüglich der Diagonalisierbarkeit von Endomorphismen in Skalarprodukträumen stellt sich die Frage, ob eine Orthonormalbasis aus Eigenvektoren existiert. Das zentrale Resultat hierzu ist der Spektralsatz. Insbesondere gilt im reellen Fall: Zu jeder symmetrischen Matrix gibt es eine orthogonale Matrix , sodass eine Diagonalmatrix ist. Wendet man dieses Ergebnis auf quadratische Formen an, ergibt sich der Satz von der Hauptachsentransformation.

Auch Bilinearformen und Sesquilinearformen können bei fest gewählten Basen durch Matrizen dargestellt werden. Eine Bilinearform ist genau dann symmetrisch und positiv definit, also ein Skalarprodukt, wenn ihre darstellende Matrix symmetrisch und positiv definit ist. Eine symmetrische Matrix ist genau dann positiv definit, wenn alle ihre Eigenwerte positiv sind. Allgemein gilt für symmetrische Bilinearformen und hermitesche Sesquilinearformen der Trägheitssatz von Sylvester, der besagt, dass die Anzahl der positiven und negativen Eigenwerte der darstellenden Matrizen nicht von der Wahl der Basis abhängen.

Vektoren und Matrizen

Vektoren endlichdimensionaler Räume können durch ihre Komponenten beschrieben werden, die (je nach Anwendung) als Spaltenvektor

oder Zeilenvektor

geschrieben werden. Häufig werden Zeilenvektoren mit einem hochgestellten T für transponiert, wie , gekennzeichnet.

In der Literatur werden Vektoren auf unterschiedliche Weise von anderen Größen unterschieden: Es werden Kleinbuchstaben, fettgedruckte Kleinbuchstaben, unterstrichene Kleinbuchstaben, Kleinbuchstaben mit einem Pfeil darüber oder kleine Frakturbuchstaben benutzt. Dieser Artikel verwendet Kleinbuchstaben.

Eine Matrix wird durch ein „Raster“ von Zahlen angegeben. Hier ist eine Matrix mit vier Zeilen und drei Spalten:

Matrizen werden meistens mit Großbuchstaben bezeichnet.

Einzelne Elemente eines Vektors werden bei Spaltenvektoren in der Regel durch einen Index angegeben: Das zweite Element des oben angegebenen Vektors wäre dann . In Zeilenvektoren wird manchmal eine Hochzahl verwendet, wobei man aufpassen muss, ob eine Vektorindizierung oder ein Exponent vorliegt: Mit dem obigen Beispiel hat man etwa . Matrixelemente werden durch zwei Indizes angegeben. Dabei werden die Elemente durch Kleinbuchstaben dargestellt: ist das Element in der zweiten Zeile der dritten Spalte (statt „in der dritten Spalte der zweiten Zeile“, denn so lässt sich leichter lesen).

Der verallgemeinerte Begriff dieser Gebilde ist Tensor, Skalare sind Tensoren nullter Stufe, Vektoren Tensoren erster Stufe, Matrizen Tensoren zweiter Stufe. Ein Tensor -ter Stufe kann durch einen -dimensionalen Zahlenwürfel repräsentiert werden.

Oftmals ist es erforderlich, Matrizen mittels elementarer Zeilenumformungen oder Basiswechsel auf eine spezielle Form zu bringen. Wichtig sind dabei insbesondere die Dreiecksform, die Diagonalform und die jordansche Normalform.

Endomorphismen und quadratische Matrizen

Bei der Darstellung einer linearen Abbildung – wie unter Matrix beschrieben – gibt es den Sonderfall einer linearen Abbildung eines endlichdimensionalen Vektorraums auf sich selbst (eines sog. Endomorphismus). Man kann dann dieselbe Basis für Urbild- und Bildkoordinaten verwenden und erhält eine quadratische Matrix , sodass die Anwendung der linearen Abbildung der Linksmultiplikation mit entspricht. Um die Abhängigkeit von und zum Ausdruck zu bringen, verwendet man Schreibweisen wie oder . Die zweimalige Hintereinanderausführung dieser Abbildung entspricht dann der Multiplikation mit usw., und man kann alle polynomialen Ausdrücke mit (Summen von Vielfachen von Potenzen von ) als lineare Abbildungen des Vektorraums auffassen.

Invertierbarkeit

Zu einer invertierbaren Matrix existiert eine inverse Matrix mit . Analog zur Rechenregel bei Zahlen ist die nullte Potenz einer quadratischen Matrix die Diagonalmatrix (Einheitsmatrix) mit Einsen auf der Diagonalen und in der alle restlichen Elemente Null sind, sie entspricht der Identitätsabbildung jedes Vektors auf sich selbst. Negative Potenzen einer quadratischen Matrix lassen sich nur berechnen, wenn die durch gegebene lineare Abbildung invertierbar ist, also keine zwei unterschiedlichen Vektoren und auf denselben Vektor abbildet. Anders ausgedrückt, muss für eine invertierbare Matrix aus stets folgen, das lineare Gleichungssystem darf also nur die Lösung haben.

Determinanten

Eine Determinante ist eine spezielle Funktion, die einer quadratischen Matrix eine Zahl zuordnet. Diese Zahl gibt Auskunft über einige Eigenschaften der Matrix. Beispielsweise lässt sich an ihr erkennen, ob eine Matrix invertierbar ist. Eine weitere wichtige Anwendung ist die Berechnung des charakteristischen Polynoms und damit der Eigenwerte der Matrix.

Es gibt geschlossene Formeln zur Berechnung der Determinanten, wie den Laplace’schen Entwicklungssatz oder die Leibniz-Formel. Diese Formeln sind jedoch eher von theoretischem Wert, da ihr Aufwand bei größeren Matrizen stark ansteigt. In der Praxis kann man Determinanten am leichtesten berechnen, indem man die Matrix mit Hilfe des Gauß-Algorithmus in obere oder untere Dreiecksform bringt, die Determinante ist dann einfach das Produkt der Hauptdiagonalelemente.

Beispiel

Obige Begriffe sollen an einem durch die Fibonacci-Folge motivierten Beispiel verdeutlicht werden.

Berechnung von Potenzen mittels Diagonalisierung

Die Fibonacci-Folge ist rekursiv durch die Gleichungen , und für definiert, was gleichbedeutend ist mit

und

,

woraus durch Iteration die nichtrekursive Formel

folgt, in der die -te Potenz einer Matrix vorkommt.

Das Verhalten einer solchen Matrix bei Potenzierung ist nicht leicht zu erkennen; hingegen wird die -te Potenz einer Diagonalmatrix einfach durch Potenzierung jedes einzelnen Diagonaleintrags berechnet. Wenn es nun eine invertierbare Matrix gibt, sodass Diagonalform hat, lässt sich die Potenzierung von auf die Potenzierung einer Diagonalmatrix zurückführen gemäß der Gleichung (die linke Seite dieser Gleichung ist dann die -te Potenz einer Diagonalmatrix). Allgemein lässt sich durch Diagonalisierung einer Matrix ihr Verhalten (bei Potenzierung, aber auch bei anderen Operationen) leichter erkennen.

Fasst man als Matrix einer linearen Abbildung auf, so ist die Transformationsmatrix die Basiswechselmatrix zu einer anderen Basis , also (wobei die Identitätsabbildung jeden Vektor auf sich selbst abbildet). Dann ist nämlich .

Im oben genannten Beispiel lässt sich eine Transformationsmatrix finden, sodass

eine Diagonalmatrix ist, in der der goldene Schnitt vorkommt. Hieraus erhält man schließlich die Formel von Binet:

Eigenwerte

Wie kommt man von der Matrix auf die Zahl ? An der Diagonalmatrix erkennt man sofort

,

dass es also einen Vektor ungleich Null gibt, der durch Multiplikation mit der Diagonalmatrix komponentenweise vervielfacht (genauer: ver--facht) wird: . Die Zahl heißt wegen dieser Eigenschaft ein Eigenwert der Matrix (mit Eigenvektor ). Im Fall von Diagonalmatrizen sind die Eigenwerte gleich den Diagonaleinträgen.

ist aber auch zugleich Eigenwert der ursprünglichen Matrix (mit Eigenvektor , denn ), die Eigenwerte bleiben bei Transformation der Matrix also unverändert. Die Diagonalform der Matrix ergibt sich demnach aus deren Eigenwerten, und um die Eigenwerte von zu finden, muss man untersuchen, für welche Zahlen das lineare Gleichungssystem eine von Null verschiedene Lösung hat (oder, anders ausgedrückt, die Matrix nicht invertierbar ist).

Die gesuchten Zahlen sind genau diejenigen, die die Determinante der Matrix zu Null machen. Diese Determinante ist ein polynomialer Ausdruck in (das sogenannte charakteristische Polynom von ); im Falle der oben genannten 2×2-Matrix ergibt dies die quadratische Gleichung mit den beiden Lösungen und . Die zugehörigen Eigenvektoren sind Lösungen der linearen Gleichungssysteme beziehungsweise , sie bilden dann die Spalten der Transformationsmatrix .

Diagonalisierbarkeit

Ob eine Matrix diagonalisierbar ist, hängt vom verwendeten Zahlbereich ab. ist zum Beispiel über den rationalen Zahlen nicht diagonalisierbar, weil die Eigenwerte und irrationale Zahlen sind. Die Diagonalisierbarkeit kann aber auch unabhängig vom Zahlbereich scheitern, wenn nicht „genügend“ Eigenwerte vorhanden sind; so hat etwa die Jordanform-Matrix

nur den Eigenwert (als Lösung der quadratischen Gleichung ) und ist nicht diagonalisierbar. Bei genügend großem Zahlbereich (zum Beispiel über den komplexen Zahlen) lässt sich aber jede Matrix diagonalisieren oder in Jordansche Normalform transformieren.

Da die Transformation einer Matrix dem Basiswechsel einer linearen Abbildung entspricht, besagt diese letzte Aussage, dass man zu einer linearen Abbildung bei genügend großem Zahlbereich stets eine Basis wählen kann, die „auf einfache Weise“ abgebildet wird: Im Fall der Diagonalisierbarkeit wird jeder Basisvektor auf ein Vielfaches von sich abgebildet (ist also ein Eigenvektor); im Fall der Jordanform auf ein Vielfaches von sich plus evtl. den vorigen Basisvektor. Diese Theorie der linearen Abbildung lässt sich auf Körper verallgemeinern, die nicht „genügend groß“ sind; in ihnen müssen neben der Jordanform andere Normalformen betrachtet werden (zum Beispiel die Frobenius-Normalform).

Literatur

Wikibooks: Lineare Algebra – Lern- und Lehrmaterialien
Commons: Lineare Algebra – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. John Stillwell: Mathematics and Its History. Springer, New York, NY 2010, ISBN 978-1-4419-6052-8, S. 88–89, doi:10.1007/978-1-4419-6053-5_6.
  2. Heinz-Wilhelm Alten: 4000 Jahre Algebra. Geschichte, Kulturen, Menschen. Springer, Berlin u. a. 2003, ISBN 3-540-43554-9, S. 335–339.

Read other articles:

Loch Ness, der zweitgrößte und bekannteste schottische Loch Als Loch (Aussprache in Schottland wie im Deutschen: /lɔx/) werden in Schottland stehende Gewässer und manche schmalen Meeresbuchten bezeichnet. Das Wort ist ab etwa 1350 bis 1400 im Mittelenglischen zu finden und entstammt der schottisch-gälischen und altirischen Sprache.[1] Zurückzuführen ist es auf urkeltisch *loku-, was mit dem gleichbedeutenden lateinischen lacus urverwandt ist.[2] Im irischen Englisch ist...

 

Untuk kegunaan lain, lihat Berkik (disambiguasi). Berkik Gallinago stenura Klasifikasi ilmiah Kerajaan: Animalia Filum: Khordata Kelas: Aves Ordo: Charadriiformes Famili: Scolopacidae Genera Coenocorypha Gallinago Lymnocryptes Berkik adalah salah satu dari sekitar 26 spesies burung penyeberang yang tergolong ke dalam tiga genera yang masuk ke dalam famili Scolopacidae. Berkik dalam genus Gallinago tersebar hampir di seluruh dunia, berkik dalam genus Lymnocryptes tersebar di Asia dan Eropa dan...

 

Kontes Lagu Eurovision Junior 2012 Pembawa Acara Ewout Genemans Penyiar Tuan Rumah AVRO Tempat Akan diumumkan, Belanda Jumlah kontestan 2 (sampai sekarang) Peta Partisipasi   Negara peserta Kontes Lagu Eurovision Junior ◄2011        2013► Kontes Lagu Eurovision Junior 2012 adalah kontes yang akan menjadi Kontes Lagu Eurovision Junior edisi kesepuluh dan akan diselenggarakan di Belanda. Kota tuan rumah dan tempat penyelenggaraan, s...

Об экономическом термине см. Первородный грех (экономика). ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Ран�...

 

United States historic placeSuffolk County JailU.S. National Register of Historic Places Show map of BostonShow map of MassachusettsShow map of the United StatesLocationBoston, MassachusettsCoordinates42°21′43″N 71°4′13″W / 42.36194°N 71.07028°W / 42.36194; -71.07028Built1851ArchitectGridley J. F. BryantNRHP reference No.80000670[1]Added to NRHPApril 23, 1980 The Charles Street Jail (built 1851), also known as the Suffolk County Jail, is a...

 

Provincial park in Alberta, Canada Miquelon Lake Provincial ParkLocation of Miquelon Lake Provincial Park in AlbertaLocationAlberta, CanadaNearest cityEdmontonCoordinates53°15′03″N 112°52′52″W / 53.2508°N 112.881°W / 53.2508; -112.881Area12.99 square kilometres (5.02 sq mi)Established1958Governing bodyAlberta Environment and Protected Areas Miquelon Lake Provincial Park is a provincial park in Alberta, Canada, about 65 kilometres southea...

Sidorame TimurKelurahanKantor Kelurahan Sidorame TimurNegara IndonesiaProvinsiSumatera UtaraKotaMedanKecamatanMedan PerjuanganKodepos20236Kode Kemendagri12.71.18.1006 Kode BPS1275160006 Luas... km²Jumlah penduduk... jiwaKepadatan... jiwa/km² Sidorame Timur adalah kelurahan di kecamatan Medan Perjuangan, Medan, Sumatera Utara, Indonesia. Galeri Gereja HKBP Saroha di Kelurahan Sidorame Timur lbsKecamatan Medan Perjuangan, Kota Medan, Sumatera UtaraKelurahan Tegal Rejo Sidorame Barat I Si...

 

Pour l’article ayant un titre homophone, voir Percent. Pour les articles homonymes, voir Persan (homonymie) et Farsi. Persanپارسیفارسی Pays Iran, Afghanistan, Pakistan, Tadjikistan, Azerbaïdjan[1], Ouzbékistan, Turkménistan Nombre de locuteurs Macro-langue[2] : 61 481 020 [3]Total[précision nécessaire] : 120 000 000[4]. Nom des locuteurs persophones, persanophones Typologie SOV, flexionnelle, accusative Écriture Alphabet perso-arabe Classi...

 

فريتز شير   معلومات شخصية الميلاد 13 مارس 1926   فاجنهاوزن  الوفاة 29 سبتمبر 1997 (71 سنة)   فراونفيلد  الجنسية سويسرا  الحياة العملية المهنة دراج  نوع السباق سباق الدراجات الهوائية  تعديل مصدري - تعديل   فريتز شير (بالإنجليزية: Fritz Schär)‏ (و. 1926 – 1997 م) هو راكب در�...

这是西班牙语人名,首姓或父姓是「马杜罗」,次姓或母姓(母親的父姓)是「莫罗斯」。 尼古拉斯·馬杜羅Nicolás Maduro Moros 委内瑞拉总统现任就任日期2013年4月19日代理:2013年3月5日-2013年4月19日2019年-2023年,與胡安·瓜伊多爭位副总统豪尔赫·阿雷亚萨(英语:Jorge Arreaza)(2013-2016年)阿里斯托武洛·伊斯图里斯(英语:Aristóbulo Istúriz)(2016-2017年)塔雷克·埃尔·艾�...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

Northwestern Sørkapp Land Sørkapp Land is the land area south of Hornsund, at the southern part of Spitsbergen, Svalbard.[1] Two glaciers, Hornbreen and Hambergbreen, divide Sørkapp Land from Torell Land.[2][3] Sørkapp Land is included in the Sør-Spitsbergen National Park. References ^ Sørkapp Land. Norwegian Polar Institute. Retrieved 15 November 2011. ^ Hornbreen. Norwegian Polar Institute. Archived from the original on 11 July 2012. Retrieved 15 November 2011...

PlaceNew York City's 21st City Council districtGovernment • Councilmember  Francisco Moya (D—Corona)Population (2010)[1] • Total172,670Demographics • Hispanic75% • Asian13% • Black6% • White5% • Other2%Registration • Democratic70.0% • Republican6.7% • No party preference20.9%Registered voters (2021) 64,275[2] New York City's 21st City Council dis...

 

See also: Ancient history This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (October 2023) (Learn how and when to remove this message) The exterior of the Colosseum at night, showing the partially intact outer wall (left) and the mostly intact inner wall (right), one of the best-known symbols of the Roman Empire Recognized great powers came about firs...

 

The Great SeerPoster promosi untuk The Great SeerGenreDrama sejrahaDitulis olehLee Soo-yeonNam Sun-nyeoSutradaraLee Yong-sukPemeranJi SungJi Jin-heeSong Chang-euiKim So-yeonLee Yoon-jiNegara asalKorea SelatanBahasa asliKoreaJmlh. episode35ProduksiLokasi produksiKoreaDurasiRabu dan Kamis pukul 21:55 (WSK)Rilis asliRilis10 Oktober 2012 (2012-10-10) –7 Februari 2013 (2013-2-7) Korean nameHangul대풍수 Hanja大風水 Alih AksaraDae Pung SuMcCune–ReischauerTae P'ung Su The Gr...

U.S. House district for Louisiana Louisiana's 2nd congressional district From 2023 to 2025 From 2025Interactive map of district boundariesRepresentative  Troy CarterD–New OrleansDistribution94.68% urban[1]5.42% ruralPopulation (2022)727,277[2]Median householdincome$48,015[2]Ethnicity58.2% Black27.1% White8.7% Hispanic2.8% Two or more races2.6% Asian0.7% otherCook PVID+25[3] Louisiana's 2nd congressional district contains nearly all of the city of New Orl...

 

American conservationist (born 1950) This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (April 2024) (Learn how and when to remove this message) A major contributo...

 

Map all coordinates using OpenStreetMap Download coordinates as: KML GPX (all coordinates) GPX (primary coordinates) GPX (secondary coordinates) Town in Queensland, AustraliaKingstonLogan City, QueenslandMarsden library is located in the far south of the suburbKingstonCoordinates27°39′24″S 153°07′04″E / 27.6566°S 153.1177°E / -27.6566; 153.1177 (Kingston (town centre))Population10,506 (2021 census)[1] • Density1,568/km2 (4,...

右江壯語母语国家和地区 中国族群壮族母语使用人数870,000 (2007)語系壮侗语系 侗台語族壯傣語支北部台语支右江壯語文字壮文語言代碼ISO 639-3zjyGlottologyouj1238[1] 右江壮语是壮语的一种,属北部台语支,通行于中国广西壮族自治区的田东、田阳、百色一带,使用人数大约有90万人左右。 历史与系属分类 母语使用者称其语言为Gangjdoj,意为“本地话”。 奥德里�...

 

Direction générale de l'Offre de soinsCadreSigle DGOSForme juridique Service central d'un ministèreDomaine d'activité Administration publique généralePays  FranceOrganisationDirectrice Marie Daudé (d)Organisation mère Ministère de la Santé et de la PréventionIdentifiantsSIREN 130019300Annuaire du service public gouvernement/administration-centrale-ou-ministere_171317modifier - modifier le code - modifier Wikidata La direction générale de l'offre de soins (DGOS) est une direc...