Die transponierte Matrix, gespiegelte Matrix oder gestürzte Matrix ist in der Mathematik diejenige Matrix, die durch Vertauschen der Rollen von Zeilen und Spalten einer gegebenen Matrix entsteht. Die erste Zeile der transponierten Matrix entspricht der ersten Spalte der Ausgangsmatrix, die zweite Zeile der zweiten Spalte und so weiter. Anschaulich entsteht die transponierte Matrix durch Spiegelung der Ausgangsmatrix an ihrer Hauptdiagonale. Die Umwandlung einer Matrix in ihre transponierte Matrix wird Transponierung, Transposition oder Stürzen der Matrix genannt.
Die transponierte Matrix ergibt sich also dadurch, dass die Rollen von Zeilen und Spalten der Ausgangsmatrix vertauscht werden. Anschaulich entsteht die transponierte Matrix durch Spiegelung der Ausgangsmatrix an ihrer Hauptdiagonale mit . Gelegentlich wird die transponierte Matrix auch durch , oder notiert.
Beispiele
Durch Transponieren einer -Matrix (eines Zeilenvektors) entsteht eine -Matrix (ein Spaltenvektor) und umgekehrt:
Eine quadratische Matrix behält durch Transponieren ihren Typ, jedoch werden alle Einträge an der Hauptdiagonale gespiegelt:
Durch Transponierung einer -Matrix entsteht eine -Matrix, bei der die erste Zeile der ersten Spalte der Ausgangsmatrix und die zweite Zeile der zweiten Spalte der Ausgangsmatrix entspricht:
Eigenschaften
Summe
Für die Transponierte der Summe zweier Matrizen gleichen Typs gilt
.
Allgemein ergibt sich die Summe von Matrizen gleichen Typs zu
.
Die Transponierte einer Summe von Matrizen ist demnach gleich der Summe der Transponierten.
Skalarmultiplikation
Für die Transponierte des Produkts einer Matrix mit einem Skalar gilt
.
Die Transponierte des Produkts einer Matrix mit einem Skalar ist also gleich dem Produkt des Skalars mit der transponierten Matrix.
Zweifache Transposition
Für die Transponierte der Transponierten einer Matrix gilt
.
Durch zweifache Transposition ergibt sich demnach stets wieder die Ausgangsmatrix.
Produkt
Für die Transponierte des Produkts einer Matrix mit einer Matrix gilt
mit den Transponierten und .
Allgemein ergibt sich für das Produkt von Matrizen passenden Typs
.
Die Transponierte eines Produkts von Matrizen ist demnach gleich dem Produkt der Transponierten, jedoch in umgekehrter Reihenfolge.
Inverse
Die Transponierte einer regulären Matrix ist ebenfalls regulär. Für die Transponierte der Inversen einer regulären Matrix gilt dabei
und daher ist die inverse Matrix zu . Die Transponierte der inversen Matrix ist demnach gleich der Inversen der transponierten Matrix. Diese Matrix wird gelegentlich auch mit bezeichnet.[1]
Exponential und Logarithmus
Für das Matrixexponential der Transponierten einer reellen oder komplexen quadratischen Matrix gilt
.
Entsprechend gilt für den Matrixlogarithmus der Transponierten einer regulären reellen oder komplexen Matrix
die einer Matrix ihre Transponierte zuordnet, wird Transpositionsabbildung genannt. Aufgrund der vorstehenden Gesetzmäßigkeiten besitzt die Transpositionsabbildung die folgenden Eigenschaften:
Die Transponierte einer Blockmatrix mit Zeilen- und Spaltenpartitionen ist durch
gegeben. Sie entsteht durch Spiegelung aller Blöcke an der Hauptdiagonale und nachfolgende Transposition jedes Blocks.
Kenngrößen
Rang
Für eine Matrix ist der Rang der transponierten Matrix gleich dem der Ausgangsmatrix:
Das Bild der Abbildung wird dabei von den Spaltenvektoren von aufgespannt, während das Bild der Abbildung von den Zeilenvektoren von aufgespannt wird. Die Dimensionen dieser beiden Bilder stimmen dabei stets überein.
Spur
Für eine quadratische Matrix ist die Spur (die Summe der Hauptdiagonalelemente) der transponierten Matrix gleich der Spur der Ausgangsmatrix:
Denn die Diagonalelemente der transponierten Matrix stimmen mit denen der Ausgangsmatrix überein.
Determinante
Für eine quadratische Matrix ist die Determinante der transponierten Matrix gleich der Determinante der Ausgangsmatrix:
Für eine quadratische Matrix ist aufgrund der Invarianz der Determinante unter Transposition auch das charakteristische Polynom der transponierten Matrix mit dem der Ausgangsmatrix identisch:
Daher stimmen auch die Eigenwerte der transponierten Matrix mit denen der Ausgangsmatrix überein, die beiden Spektren sind also gleich:
gegeben. Bezüglich des Standardskalarprodukts weisen eine reelle Matrix und ihre Transponierte die Verschiebungseigenschaft
für alle Vektoren und auf. Hierbei steht auf der linken Seite das Standardskalarprodukt im und auf der rechten Seite das Standardskalarprodukt im . Für das Frobenius-Skalarprodukt zweier Matrizen gilt
beschreiben. Mit den Koordinatenvektoren und zweier Vektoren und gilt für den Wert der Bilinearform:
Sind nun und weitere Basen von bzw. , dann gilt für die entsprechende Darstellungsmatrix
,
wobei die Basiswechselmatrix in und die Basiswechselmatrix in sind. Zwei quadratische Matrizen sind daher genau dann zueinander kongruent, es gilt also
mit einer regulären Matrix genau dann, wenn und die gleiche Bilinearform bezüglich gegebenenfalls unterschiedlicher Basen darstellen.
Duale Abbildungen
Sind wieder und endlichdimensionale Vektorräume über dem Körper mit zugehörigen Dualräumen und , dann wird die zu einer gegebenen linearen Abbildung zugehörige duale Abbildung durch
für alle charakterisiert. Ist nun eine Basis für und eine Basis für mit zugehörigen dualen Basen und , dann gilt für die Abbildungsmatrizen von und von die Beziehung
.
Die Abbildungsmatrix der dualen Abbildung bezüglich der dualen Basen ist demnach gerade die Transponierte der Abbildungsmatrix der primalen Abbildung bezüglich der primalen Basen. In der Physik kommt dieses Konzept bei kovarianten und kontravarianten vektoriellen Größen zum Einsatz.
Adjungierte Abbildungen
Sind nun und endlichdimensionale reelle Skalarprodukträume, dann wird die zu einer gegebenen linearen Abbildung zugehörige adjungierte Abbildung durch die Beziehung
für alle und charakterisiert. Ist weiter eine Orthonormalbasis von , eine Orthonormalbasis von und die Abbildungsmatrix von bezüglich dieser Basen, dann ist die Abbildungsmatrix von bezüglich dieser Basen gerade
Durch die transponierte Matrix werden auch spezielle Permutationen definiert. Werden in eine -Matrix zeilenweise der Reihe nach die Zahlen von bis geschrieben und dann spaltenweise wieder abgelesen (was genau dem Transponieren der Matrix entspricht), ergibt sich eine Permutation dieser Zahlen, die durch
für und angegeben werden kann. Die Anzahl der Fehlstände und damit auch das Vorzeichen von lassen sich explizit durch
Allgemeiner können auch Matrizen mit Einträgen aus einem Ring (gegebenenfalls mit Eins) betrachtet werden, wobei ein Großteil der Eigenschaften transponierter Matrizen erhalten bleibt. In beliebigen Ringen muss jedoch der Spaltenrang einer Matrix nicht mit ihrem Zeilenrang übereinstimmen. Die Produktformel und die Determinantendarstellung gelten nur in kommutativen Ringen.
Roger Horn, Charles R. Johnson: Matrix Analysis. Cambridge University Press, 1990, ISBN 978-0-521-38632-6.
Eberhard Oeljeklaus, Reinhold Remmert: Lineare Algebra I. Springer, 2013, ISBN 978-3-642-65851-8.
Originalarbeit
Arthur Cayley: A memoir on the theory of matrices. In: Philosophical Transactions of the Royal Society of London. Band148, 1858, S.17–37 (Online).
Einzelnachweise
↑Christian Voigt, Jürgen Adamy: Formelsammlung der Matrizenrechnung. Oldenbourg Verlag, 2007, S.9.
↑Eberhard Oeljeklaus, Reinhold Remmert: Lineare Algebra I. Springer, 2013, S.153.
↑Teiko Heinosaari, Mário Ziman: The Mathematical Language of Quantum Theory. Cambridge University Press, 2011, S. 177 (englisch, eingeschränkte Vorschau in der Google-Buchsuche).
↑O. Taussky, H. Zassenhaus: On the similarity transformation of matrix and its transpose. In: Pacific J. Math. Band9, 1959, S.893–896.
↑Franz Lemmermeyer: Reciprocity Laws: From Euler to Eisenstein. Springer, 2000, S.32.