LabVIEW
LabVIEW ist ein grafisches Programmiersystem von National Instruments. Das Akronym steht für „Laboratory Virtual Instrumentation Engineering Workbench“. Die erste Version erschien 1986 für Macintosh-Computer. Heute gibt es die Entwicklungsumgebung außerdem für Windows und Linux. Vergleichbar entwickelte Hewlett-Packard (inzwischen Agilent) die visuelle Programmiersprache VEE. Hauptanwendungsgebiete von LabVIEW sind die Mess-, Regel- und Automatisierungstechnik. Die Programmierung erfolgt mit einer grafischen Programmiersprache, genannt „G“, nach dem Datenfluss-Modell. Im Vordergrund steht dabei die Datenerfassung und -verarbeitung. LabVIEW-Programme werden als Virtuelle Instrumente oder einfach VIs bezeichnet. Sie bestehen aus zwei Komponenten: Das Frontpanel enthält die Benutzerschnittstelle, das Blockdiagramm den grafischen Programmcode. Dieser wird nicht von einem Interpreter abgearbeitet, sondern kompiliert. Dadurch ist die Leistung vergleichbar mit anderen Hochsprachen. LabVIEW benutzt die gleichen Bibliotheken und Datenerfassungsmodule wie LabWindows/CVI, der Integrierten Entwicklungsumgebung der Firma National Instruments und ist deshalb kompatibel mit LabWindows/CVI. Für viele komplexe mathematische Aufgaben stehen auch Funktionsbibliotheken zur Verfügung. Ähnlich wie Matlab deckt LabVIEW auch die Bereiche SP-Steuerung und flexible Versuchsautomatisierung ab. ProgrammiermethodeFunktionsblöcke werden in LabVIEW (genau wie vollständige Programme) als Virtuelle Instrumente (VIs) bezeichnet. Dies kommt daher, dass prinzipiell jedes Programm als Unterprogramm (SubVI) in einem anderen verwendet werden kann, bzw. jedes SubVI auch eigenständig lauffähig ist. Aufgrund des Datenfluss-Konzeptes waren bis zu Version 8.6 rekursive Aufrufe grundsätzlich nicht möglich. Mit zusätzlichem Aufwand ließen sich aber auch Rekursionen verwirklichen.[1] Ab Version 9.0 kann ein ablaufinvariantes VI sich selbst als SubVI enthalten und damit rekursiv aufrufen.[2] Der Programmierer verbindet VIs mit Verbindungslinien (Drähten) und definiert damit den Datenfluss. Jedes VI kann dabei Ein- und Ausgänge besitzen. Die Ausführung eines VIs beginnt, wenn alle Eingangsdaten vorhanden sind; die Ergebnisse liegen erst dann an den Ausgängen an, wenn das gesamte Unterprogramm abgearbeitet ist. Auf diese Weise wird die Abarbeitungsreihenfolge der Schritte durch Datenabhängigkeiten definiert. Eine vordefinierte Reihenfolge (z. B. „von rechts nach links“) gibt es nicht. Besitzt ein SubVI keine Eingänge, wird es bei Programmstart ausgeführt. Besitzt es keine Ausgänge, werden die Ergebnisdaten entweder verworfen oder auf einem anderen Weg „verwertet“ (z. B. Schreiben auf Festplatte oder Netzwerk, Ausgabe auf Peripheriegeräte). Allerdings kann durch Übergabe einer Referenz auf eine beliebige Variable an ein Vi der Inhalt der Variable und deren Eigenschaften geändert werden. Genauso kann ein SubVI ohne Eingänge Daten von Peripheriegeräten erhalten oder selbst generieren (z. B. per Zufallsgenerator). SubVIs können beliebig tief verschachtelt werden. Viele der LabVIEW-eigenen Funktionen sind ihrerseits normale VIs, die auch vom Programmierer bearbeitet werden können (wenngleich dies in der Regel nicht zu empfehlen ist). Letztlich basieren alle VIs auf einer Reihe grundlegender Funktionen, sogenannter Primitive, die sich nicht als VIs öffnen lassen. Viele VIs und Funktionen in LabVIEW sind polymorph, d. h. ihre Funktionsweise passt sich an den Typ der übergebenen Daten an. Beispielsweise kann die Funktion „Array erstellen“ für die Erstellung jeglicher Felder genutzt werden, d. h. Strings, Integer oder auch Arrays und Cluster. Es ist auch möglich, eigene polymorphe VIs zu erstellen. Letztlich handelt es sich hierbei um eine Sammlung mehrerer VIs mit unterschiedlichen Datentypen an den Ein- und Ausgängen. Datenquellen und Datensenken können mit Anzeige- und Bedienelementen auf dem Frontpanel verknüpft sein. So kann z. B. eine Zahleneingabe mit einem Drehknopf und eine Ausgabe einer booleschen Variablen mit einer Leuchtdiode realisiert werden. Bei sehr großen und umfangreichen Projekten ist es wie in anderen Programmiersprachen wichtig, von Anfang an eine durchdachte Struktur zu verwenden und den Code zu modularisieren. Durch den vorhandenen Projektmanager (ab V8.0) wird dies unterstützt. Die Verwaltung einer großen Anzahl an VIs sowie externer Dateien wird dadurch übersichtlicher. Auch die Versionsverwaltung gestaltet sich hiermit einfacher. Eine wesentliche Neuerung (ab V8.20) besteht darin, objektorientiert programmieren zu können. Klassen und Attribute sowie deren Methoden können dabei auch vererbt werden. LabVIEW Robotics 2009 enthält Werkzeuge für den Entwurf eines Robotersystems. Teil des Softwarepakets ist das Robotics Module, das eine umfassende Robotikbibliothek mit Anbindungsmöglichkeiten an Standard-Robotiksensoren und -aktoren, grundlegenden Algorithmen für den intelligenten Betrieb sowie Wahrnehmungs- und Motorsteuerungsfunktionen für Roboter und autonome Fahrzeuge umfasst. LabVIEW, TCP/IP und XML-WebdiensteTCP/IP-Sockets übertragen Zeichenketten in LAN und Internet. Sie werden zum Beispiel für das HTTP-Protokoll verwendet welches Websites im Webbrowser darstellt. LabVIEW macht im LAN Gebrauch von TCP/IP-Sockets, und das für unterschiedliche Zwecke:
LabVIEW-spezifisch ist dabei einerseits die Fernsteuerung über das Remote Panel. Dabei kann ein Benutzer sich über den Webbrowser (Internet Explorer wird bevorzugt unterstützt) mit einem geöffneten Frontpanel verbinden. Das Frontpanel selbst gibt die Steuerung dann ab. Der beabsichtigte Nutzeffekt ist der Zugang über einen zweiten PC. Jedoch muss auf dem Quell-PC ein Fenster geöffnet sein. Weiter verlangt NI für Nutzeranzahlen größer als eins zusätzliche Lizenzgebühren. LabVIEW-spezifisch sind andererseits selbst erstellbare XML-Webdienste. Sie sind erst in der Vollversion enthalten. Diese Webdienste benötigen kein GUI-Fenster auf dem Host-PC. Ein Beispiel ist, wenn der Nutzer einen HTTP-GET-Request mit zwei Parametern an den Service sendet. Die Parameter sind dabei in der URL enthalten. Der Dienst führt ein VI aus und antwortet mit einer XML-Datei. Die URL-Parameter werden in dem zu implementierenden Dienst als Controls in dem VI erstellt – alle Anzeigeelemente des VIs erscheinen mit ihren Werten in der zurückgesendeten XML-Datei. Einen Webdienst könnte man also anwenden, um Aktuatoren zu steuern und Messwerte zu erfassen. Mit dem Webdienst kann man eigene grafische Oberflächen implementieren und eigentlich jedes Client Betriebssystem nutzen. Auch Batch-Skripte für lange Versuchsabläufe wären möglich. Um ein TCP Service Socket implizit bereitzustellen, gibt es einerseits die Möglichkeit, es über die Projekt-baumstruktur einer ausführbaren EXE beizulegen. Falls man eine Anwendung mit Remote Panel startet, so ist zur Laufzeit das Socket vorhanden. Die andere Möglichkeit der Bereitstellung ist der NI Webserver und sein Dokument-Stammverzeichnis, z. B. unter C:\Program Files (x86)\National Instruments\Shared\NI WebServer\www. Der Dienst erscheint in der Dienstekonsole unter NI APPLICATION WEBSERVER und überwacht den Port 8080. Nutzt man den Server auf einem Host mit der LabVIEW-Entwicklungsumgebung, so kann man den Dienst über die Projekt-Baumstruktur bereitstellen. Nutzt man die LabVIEW-Laufzeitumgebung auf einem anderen Host, kann man den Service über einen Installer bereitstellen, den man auf dem Entwicklungssystem über die Projekt-Baumstruktur erstellt. Vorteile
NachteileNeben den genannten Vorteilen hat die graphische Programmierung gegenüber der textbasierten auch Nachteile:
Versionen
Literatur
WeblinksEinzelnachweise |