Kāthgodām

29°16′04″N 79°32′39″E / 29.26785°N 79.5441°E / 29.26785; 79.5441
Kāthgodām
Lungsod
Nasod Flag of Indya Indiya
Estado State of Uttarakhand
Distrito Naini Tāl
Gitas-on 535 m (1,755 ft)
Tiganos 29°16′04″N 79°32′39″E / 29.26785°N 79.5441°E / 29.26785; 79.5441
Population 129,140 gikan sa enwiki
Timezone IST (UTC+5:30)
GeoNames 1267504

Lungsod ang Kāthgodām sa Indiya.[1] Nahimutang ni sa distrito sa Naini Tāl ug estado sa State of Uttarakhand, sa amihanang bahin sa nasod, 240 km sa sidlakan sa New Delhi ang ulohan sa nasod. 535 metros ibabaw sa dagat kahaboga ang nahimutangan sa Kāthgodām[1], ug adunay 129,140 ka molupyo.[2]

Ang yuta palibot sa Kāthgodām lain-lain.[saysay 1] Ang kinahabogang dapit sa palibot dunay gihabogon nga 1,220 ka metro ug 2.1 km sa amihanan-sidlakan sa Kāthgodām.[saysay 2] Dunay mga 222 ka tawo kada kilometro kwadrado sa palibot sa Kāthgodām medyo hilabihan populasyon.[4] Ang kinadul-ang mas dakong lungsod mao ang Haldwani, 5.2 km sa habagatan sa Kāthgodām. Hapit nalukop sa lasang nga sagolsagol ang palibot sa Kāthgodām.[5] Sa rehiyon palibot sa Kāthgodām, mga kanal, ug nga bato nga pormasyon talagsaon komon.[saysay 3]

Ang klima tropikal sa ibabwan.[6] Ang kasarangang giiniton 22 °C. Ang kinainitan nga bulan Mayo, sa 28 °C, ug ang kinabugnawan Enero, sa 13 °C.[7] Ang kasarangang pag-ulan 1,915 milimetro matag tuig. Ang kinabasaan nga bulan Hulyo, sa 567 milimetro nga ulan, ug ang kinaugahan Nobiyembre, sa 1 milimetro.[8]

Kāthgodām
GRAP SA KLIMA (Giya)
JFMAMJJASOND
 
 
76
 
 
17
9
 
 
103
 
 
21
11
 
 
30
 
 
27
17
 
 
38
 
 
34
20
 
 
34
 
 
32
23
 
 
335
 
 
32
23
 
 
567
 
 
26
21
 
 
448
 
 
25
20
 
 
213
 
 
26
21
 
 
44
 
 
26
19
 
 
1
 
 
24
15
 
 
26
 
 
19
11
Kasarangang talay sa kainiton (°C)
Kadaghanon sa ulan (mm)
Tinubdan: [7]
Kāthgodām is located in India
Kāthgodām
Nahimutangan sa Kāthgodām sa Indiya.


Saysay

  1. Kalkulado gikan sa pakigbingkil sa tanan nga gitas-on data (DEM 3") gikan sa Viewfinder Panoramas, sa sulod sa 10 ka kilometro radius.[3] Ang bug-os nga algoritmo anaa dinhi.
  2. Kalkulado gikan sa gitas-on data (DEM 3") gikan sa Viewfinder Panoramas.[3] Ang bug-os nga algoritmo anaa dinhi.
  3. Mas sulod sa 20 ka kilometro gilay-on itandi sa average nga densidad sa Yuta, sumala sa GeoNames.[1]

Ang mga gi basihan niini

  1. 1.0 1.1 1.2 Kāthgodām sa Geonames.org (cc-by); post updated 2015-10-04; database download sa 2016-08-15
  2. (gikopiya gikan sa enwiki 2015-07-18)
  3. 3.0 3.1 "Viewfinder Panoramas Digital elevation Model". 2015-06-21.
  4. "NASA Earth Observations: Population Density". NASA/SEDAC. Retrieved 30 Enero 2016.
  5. "NASA Earth Observations: Land Cover Classification". NASA/MODIS. Retrieved 30 Enero 2016.
  6. Peel, M C; Finlayson, B L. "Updated world map of the Köppen-Geiger climate classification". Hydrology and Earth System Sciences. 11: 1633–1644. doi:10.5194/hess-11-1633-2007. Retrieved 30 Enero 2016.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  7. 7.0 7.1 "NASA Earth Observations Data Set Index". NASA. Retrieved 30 Enero 2016.
  8. "NASA Earth Observations: Rainfall (1 month - TRMM)". NASA/Tropical Rainfall Monitoring Mission. Retrieved 30 Enero 2016.

Read other articles:

Goal! 2: Living the DreamGoal 2! posterSutradaraJaume Collet-SerraProduserMatt BarrelleMike JefferiesMark HuffamSteve McManamanDitulis olehMike JefferiesAdrian ButchartTerry LoanePemeranKuno BeckerAlessandro NivolaAnna FrielStephen DillaneLeonor VarelaDistributorBuena Vista International (Belanda, Argentina)Tanggal rilis9 Februari 2007 (U.K.) 29 Agustus 2008 (U.S.)PrekuelGoal!SekuelGoal! 3IMDbInformasi di IMDb Goal! 2: Living The Dream merupakan sebuah film Britania Raya yang dirilis pada tah...

 

American journalist and food critic Laurie OchoaOchoa (left) in 2008BornWhittier, California, USOccupation(s)Journalist, food writerSpouse Jonathan Gold ​ ​(m. 1990; died 2018)​ Laurie Ochoa is an American journalist and food critic. After beginning her career at the alternative newspaper LA Weekly, Ochoa became a writer and editor for the Los Angeles Times. She then was hired as executive editor at Gourmet before moving back to Los Angeles to l...

 

Disambiguazione – Se stai cercando altri significati, vedi Il conte di Montecristo (disambigua). Il conte di MontecristoTitolo originaleLe Comte de Monte-Cristo AutoreAlexandre Dumas 1ª ed. originale1844-1846 1ª ed. italiana1846 Genereromanzo Sottogenereromanzo d'appendice Lingua originalefrancese AmbientazioneFrancia, Italia e isole del Mar Mediterraneo (1815-1838) ProtagonistiEdmond Dantès AntagonistiFernand Mondego, Gérard de Villefort, Danglars Altri personaggiabate Faria, Mercéd�...

Number referring to cannabis 420 originally 4:20 LouisBenny Bufano's 1940 statue of Louis Pasteur in stainless steel and granite[1][2] at San Rafael High School, said to be the site of the original 4:20 gatherings in 1971Observed byCannabis counterculture, legal reformers, entheogenic spiritualists, and general users of cannabisTypeSecularSignificanceTime/date to celebrate cannabisObservancesCannabis consumption, traditionally cannabis smoking, dispensary discountsDate4:2...

 

Pour les articles homonymes, voir Sisters. S!sters S!sters sur la scène de l'Eurovision en 2019.Informations générales Pays d'origine Allemagne Genre musical Pop Années actives 2019-2020 Composition du groupe Membres Laurita Spinelli et Carlotta Truman modifier Sisters (souvent stylisé en S!sters) est un duo musical allemand, composé de Laurita Spinelli (alias Laura Kästel) et Carlotta Truman. Le duo s'est formé à l'occasion de Unser Lied für Israel, sélection nationale allemande ...

 

The King Uzziah Stricken with Leprosy, by Rembrandt, 1635. Uzia (Ibrani: עֻזִּיָּהוּ, YHWH adalah kekuatanku; Yunani: Οζίας; bahasa Latin: Ozias); Inggris: Uzziah), atau yang dikenal juga dengan nama Azarya (Ibrani: עֲזַרְיָה, YHWH telah menolong; Yunani: Αζαρις; Inggris: Azariah) adalah raja ke-10 kerajaan Yehuda (791 SM - 739 SM). Ayahnya adalah raja Amazia[1][2] dan ibunya bernama Yekholya dari Yerusalem.[3]...

Eighth meeting of the G-20 heads of government 2013 G20 Russia summitLogo of the G20 Russia 2013 summitHost countryRussiaDate5–6 SeptemberMottoBoosting Economic Growth and Job CreationVenue(s)Constantine PalaceCitiesSaint PetersburgParticipantsG20 members Guest invitees: Spain, Kazakhstan, Singapore; ASEAN, African Union, NEPADFollows2012 G20 Los Cabos summitPrecedes2014 G20 Brisbane summitWebsiteRussia G20 The 2013 G20 Saint Petersburg summit was the eighth meeting of the G20 heads of gove...

 

Perception of light level For other uses, see Brightness (disambiguation). Decreasing brightness with depth (underwater photo as example) Brightness is an attribute of visual perception in which a source appears to be radiating or reflecting light.[1] In other words, brightness is the perception elicited by the luminance of a visual target. The perception is not linear to luminance, and relies on the context of the viewing environment (for example, see White's illusion). Brightness is...

 

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

Handley Page Victor adalah jet pesawat pembom British yang diproduksi oleh Handley Page Aircraft Company selama Perang Dingin . Handley Page Victor ini adalah ketiga dan terakhir dari V-pembom penangkal nuklir Inggris. Dua lainnya V-pembom adalah Vulcan Avro dan Valiant Vickers . Beberapa pesawat yang dimodifikasi untuk peran pengintaian strategis menggunakan kamera dan radar . Setelah Angkatan Laut Kerajaan berasumsi misi pencegahan nuklir menggunakan kapal selam rudal Polaris tahun 1969 ba...

 

Defunct newspaper in Reedsport, Oregon, U.S. The Umpqua PostTypeWeekly newspaperFormatBroadsheetOwner(s)Country Media, Inc.PublisherBen KenfieldEditorShelby CaseFounded1996Ceased publication2020Headquarters2741 Frontage Road, Reedsport, OregonCirculation890 weeklyWebsitetheumpquapost.com The Umpqua Post was a weekly newspaper serving Reedsport, Oregon, United States and the surrounding area in Douglas and Coos counties. It was published each Wednesday by The World newspaper in Coos Bay. The p...

 

American physician Hyman Irving Biegeleisen (June 4, 1904 New York City – May 3, 1991, died at his home in Boca Raton, Florida[1][2]) was an American physician and pioneer of phlebology. In 1964, he founded the Phlebology Society of America (now incorporated into the American College of Phlebology). He was one of the first medical doctors in the United States to use injection as a method of treating varicose veins, and coined the term sclerotherapy to describe the treatment....

English chess grandmaster (born 1955) For other people named John Nunn, see John Nunn (disambiguation). John NunnNunn in 2010Full nameJohn Denis Martin NunnCountryEnglandBorn (1955-04-25) 25 April 1955 (age 69)London, EnglandTitleGrandmaster (1978)International Solving Grandmaster (2004)World ChampionWC Problem Solving 2004, 2007, 2010WC (Seniors over-65) 2022, 2023FIDE rating2552 (May 2024)Peak rating2630 (January 1995)Peak rankingNo. 9 (January 1985)Scientific caree...

 

List of people who were killed for being transgender. This list contains entries that may be out of scope and need to be evaluated for removal. Please help to clean it up by removing items that do not meet the inclusion criteria agreed upon on the talk page. (June 2020) This is a dynamic list and may never be able to satisfy particular standards for completeness. You can help by adding missing items with reliable sources.Part of a series onTransgender topics      Outl...

 

义勇军进行曲義勇軍進行曲B. Indonesia: Barisan Para SukarelawanPiringan hitam asli saat lagu dirilis pada tahun 1935Lagu kebangsaan  TiongkokPenulis lirikTian Han, 1934KomponisNie Er, 1935Penggunaan 27 September 1949 (Sementara) 4 Desember 1982 (Resmi)[1] 1 Juli 1997 (Hong Kong) 20 Desember 1999 (Makau) 14 Maret 2004 (Konstitusional) Mars Para Sukarelawan (义勇军进行曲, pinyin: Yìyǒngjūn Jìnxíngqú) adalah lagu kebangsaan Republik Rakyat Tiongkok (RRT)....

A concept in social psychology Part of a series onThe Self Constructs Self-knowledge (psychology) Self-image Self-concept Self-schema Theories Neural basis of self Self-categorization theory Processes Self-perception theory Self-awareness Self-reflection Self-consciousness Value judgment Self-esteem True self and false self As applied to activities Self-assessment Self-efficacy Interpersonal Self-disclosure Self-concealment Social Personal identity (philosophy) Identity (social science) Colle...

 

قرية صعوط  - قرية -  تقسيم إداري البلد  اليمن المحافظة محافظة صنعاء المديرية مديرية مناخة العزلة عزلة بني مقاتل السكان التعداد السكاني 2004 السكان 197   • الذكور 109   • الإناث 88   • عدد الأسر 36   • عدد المساكن 30 معلومات أخرى التوقيت توقيت اليمن (+3 غرينيتش) ت...

 

Disambiguazione – Se stai cercando il giurista, vedi Guido Fubini (giurista). Guido Fubini Ghiron Guido Fubini Ghiron[1] (Venezia, 19 gennaio 1879 – New York, 6 giugno 1943) è stato un matematico italiano, noto soprattutto per il teorema che porta il suo nome.[2] È considerato, insieme a Eduard Čech, il fondatore della moderna geometria proiettiva differenziale, ma ha dato contributi importanti anche all'analisi e alla fisica matematica, in particolare occupandosi di g...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Edith Ella BaldwinLahirNovember 19, 1870Worcester, MassachusettsMeninggalFebruary 21, 1941KebangsaanAmericanPekerjaanLukisan Edith Ella Baldwin (19 November 1870 – 21 Februari 1941) adalah seorang pelukis potret dan miniatur, pengrajin...

 

Geometric figure The unit hyperbola is blue, its conjugate is green, and the asymptotes are red. In geometry, the unit hyperbola is the set of points (x,y) in the Cartesian plane that satisfy the implicit equation x 2 − y 2 = 1. {\displaystyle x^{2}-y^{2}=1.} In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an alternative radial length r = x 2 − y 2 . {\displaystyle r={\sqrt {x^{2}-y^{2}}}.} Whereas the unit circle surrounds its center, the un...