La nanotecnologia és un camp de les ciències aplicades dedicat al control i manipulació de la matèria a una escala menor que un micròmetre, és a dir, a nivell d'àtoms i molècules.[1] El més habitual és que tal manipulació es produeixi en un rang d'entre un i cent nanòmetres. Per fer-se una idea aproximada de la mida tan petita que pot tenir un nanobot (un robot de proporcions microscòpiques fet amb nanotecnologia), es pot dir que un de 50 nm té la mida de 5 capes de molècules o àtoms (depenent del material de què estigui fet el nanobot).
Nano- és un prefix grec que indica una mesura, no un objecte, de manera que la nanotecnologia es caracteritza per ser un camp essencialment multidisciplinari, i cohesionat exclusivament per l'escala de la matèria amb la qual treballa. La nanotecnologia promet solucions avantguardistes i més eficients per als problemes ambientals, així com per a molts altres que afronta la humanitat. Promet beneficis de tota classe, des d'aplicacions mèdiques noves o més eficients fins a solucions de problemes ambientals i molts altres, però el concepte de nanotecnologia encara no és gaire conegut a la societat.
Un nanòmetre és la mil milionèsima part d'un metre (10-9 metres).
Els principis de la física, segons la meua opinió, no neguen la possibilitat de manipular les coses àtom a àtom. No és un intent de violar cap de les lleis (de la física); és quelcom, en principi, que es pot fer; però en la pràctica no s'ha fet perquè (les persones) som massa grans.
El terme nanotecnologia va ser encunyat per Kim Eric Drexler, que el va utilitzar al seu llibre del 1986Engines of Creation: The Coming Era of Nanotechnology. Al capítol quart del llibre, Drexler introdueix el concepte d'autoreplicació:[2] de la mateixa manera que les cèl·lules construeixen còpies per reproduir-se, els robots moleculars dissenyats per l'ésser humà podrien autoreplicar-se. Com a conseqüència, només haurien de suportar el cost del disseny i construcció del primer robot molecular capaç d'autoreplicar-se. Aquest primer robot amb capacitat generadora (anomenat assemblador) podria fins i tot construir objectes molt més especialitzats, utilitzant com a matèria primera àtoms, energia, programari i el temps.
Altres noms d'aquesta àrea van ser Rosalind Franklin, James Dewey Watson i Francis Crick quan van proposar que l'ADN era la molècula principal que tenia un paper clau en la regulació de tots els processos de l'organisme i d'aquí es va prendre la importància de les molècules com a determinants en els processos de la vida, per solucionar molts dels problemes de la humanitat, però també podria generar armes poderosíssimes. Creador del Foresight Institute i autor de llibres com Màquines de la Creació (Engines of Creation), moltes de les seves prediccions inicials no es van complir, i les seves idees semblen exagerades a l'opinió pública.
Però aquests coneixements van anar més enllà, ja que, amb això, es va poder modificar l'estructura de les molècules, com és el cas dels polímers o plàstics que avui en dia trobem en totes les nostres llars i sense els quals no podríem viure.
Amb tots aquests avenços l'ésser humà va tenir una gran fascinació per seguir investigant més sobre aquestes molècules, ja no en l'àmbit de materials inerts, sinó en la recerca de molècules orgàniques que es trobaran en el nostre organisme.
Avui en dia en la medicina es dona més importància a la investigació en el món microscòpic, ja que es considera que és on es poden trobar les alteracions estructurals que provoquen la malaltia, i no cal dir de les branques de la medicina que n'han sortit més beneficiades, com ara la microbiologia, la immunologia, la fisiologia, i en fi, gairebé totes les branques de la medicina. Amb tots aquests avenços han sorgit també noves ciències, com és l'enginyeria genètica, de la qual tothom pot haver sentit a parlar referida al clonatge i a la millora d'espècies. Entre aquestes ciències també se'n troben d'altres no tan conegudes, com és la nanotecnologia, que es podria definir com aquella que es dedica a la fabricació de la tecnologia en miniatura.
La nanotecnologia, a diferència de l'enginyeria genètica, encara no està en procés de desenvolupament; Se la pot considerar com «una ciència teòrica»: encara no s'ha portat a la pràctica perquè encara no és viable, però les repercussions que pot comportar per al futur són immenses.
Conceptes fonamentals
Un nanòmetre (nm) és una mil milionèsima part, o 10-9, d'un metre. En comparació, les distàncies dels enllaços carboni-carboni típiques, o els espais entre aquests àtoms en una molècula, són de l'ordre dels 0.12-0.15 nm, i una hèlix doble de DNA té un diàmetre al voltant de 2 nm. D'altra banda, les formes de vida cel·lulars més petites, els bacteris del genus micoplasma, tenen al voltant de 200 nm de llargada.
Per posar aquesta escala en un altre context, la proporció relativa d'un nanòmetre a un metre és la mateixa que la d'una boleta de jugar a bales a la mida de la Terra.[3] O una altra manera de veure-ho: un nanòmetre és la longitud que creix la barba d'un home en el temps que tarda a alçar la navalla a la cara.[3]
En la nanotecnologia s'apliquen dos enfocaments principals. En l'enfocament "de baix a dalt", els components i mecanismes es construeixen a partir de components moleculars que es munten sols químicament per principis de reconeixement molecular. En l'enfocament "de dalt a baix", els nano objectes es construeixen a partir d'entitats més grans sense control a nivell atòmic.[4]
Àrees de la física com la nanoelectrònica, la nanomecànica i la nanofotònica han evolucionat durant les darreres dècades per proporcionar una fonamentació científica bàsica a la nanotecnologia.
De simple a complex: una perspectiva molecular
La química sintètica moderna ha arribat al punt que és possible preparar petites molècules amb gairebé qualsevol estructura. Aquests mètodes es fan servir avui per fabricar una varietat àmplia de productes químics útils, com fàrmacs o polímers comercials. Aquesta habilitat planteja la qüestió d'estendre aquesta classe de control al nivell immediatament més gran, cercant mètodes per unir aquestes molècules úniques en muntatges supramoleculars que constin de moltes molècules arranjades de manera ben definida.
Aquests enfocaments fan servir els conceptes d'automuntatge molecular i/o química supramolecular per arranjar-les automàticament cap a una conformació útil a través d'una aproximació de baix a dalt. El concepte de reconeixement molecular és especialment important: les molècules es poden dissenyar de manera que una configuració o arranjament específic sigui afavorit a causa de les forces intermoleculars no covalents. Les regles d'aparellament de bases de Watson i Crick són un resultat directe d'això, com ho és l'especificitat d'un enzim adreçat a un substrat únic, o el mateix plegament específic de les proteïnes. Així, dos o més components es poden dissenyar perquè siguin complementaris i mútuament atractius de manera que facin un conjunt més complex i útil.
Aquestes aproximacions de baix a dalt haurien de ser capaces de produir dispositius en paral·lel i ser molt més barates que els mètodes de dalt a baix, però potencialment podrien quedar desbordades a mesura que la mida i la complexitat desitjada dels muntatges augmentés. La majoria de les estructures útils exigeixen arranjaments complexos –i termodinàmicament improbables– d'àtoms. No obstant això, hi ha molts exemples d'automuntatge basats en reconeixement molecular en biologia; els més notables, l'aparellament de bases de Watson-Crick i les interaccions entre substrat i enzims. El desafiament per a la nanotecnologia és si aquests principis es poden fer servir per idear estructures noves a més a més de les naturals.
Nanotecnologia molecular: una visió a llarg termini
La nanotecnologia molecular, a vegades anomenada fabricació molecular, descriu el concepte de nanosistemes construïts (màquines a nanoescala) que operen a escala molecular. Està associat especialment amb el concepte de muntador molecular, una màquina que pot produir una estructura desitjada o mecanisme àtom a àtom fent servir els principis de mecanosíntesi. El mot «fabricació» en el context de nanosistemes productius no es refereix a les tecnologies convencionals utilitzades per fabricar nanomaterials com nanotubs de carboni i nanopartícules. Se'n hauria de distingir clarament.
Quan es va encunyar el terme nanotecnologia de forma independent per Eric Drexler (que a l'època no era conscient d'un ús anterior per Norio Taniguchi) es referia a una tecnologia de fabricació futura basada en sistemes de màquines moleculars. La base era que les analogies biològiques a escala molecular de components de màquines tradicionals demostraven que les màquines moleculars eren possibles: pels incomptables exemples que es troben en biologia, se sap que es poden produir, màquines biològiques sofisticades optimitzades de manera estocàstica.
S'espera que els desenvolupaments de la nanotecnologia faran possible construir-ne per alguns altres mitjans, potser utilitzant principis biomimètics. Tanmateix, Drexler i altres investigadors[5] han proposat que la nanotecnologia avançada, tot i que potser al començament implementada per mitjans biomimètics, en el fons podria estar basada sobre principis d'enginyeria mecànica, és a dir, una tecnologia de fabricació basada en la funcionalitat mecànica dels components (com engranatges, coixinets, motors, i components estructurals) que permetrien el muntatge posicional programable, amb especificacions atòmiques.[6] L'actuació física i l'enginyeria de dissenys exemplars s'analitzen en el llibre de Drexler Nanosistemes.
En general és molt difícil muntar mecanismes a escala atòmica, donat que tot el que hi ha per col·locar àtoms són uns altres àtoms de mida i enganxositat comparables. Una altra punt de vista, posada plantejat per Carlo Montemagno,[7] és que els nanosistemes futurs seran híbrids de tecnologia de silici i màquines moleculars biològiques. Hi ha encara un altre punt de vista, avançat per Richard Smalley, és que la mecanosíntesi és impossible a causa de les dificultats de manipular mecànicament molècules individuals.
Això va portar a un intercanvi de cartes a la publicació Chemical & Engineering News de la ACS el 2003.[8] Encara que la biologia demostra clarament que els sistemes de màquines moleculars són possibles, les màquines moleculars no biològiques avui són només en la seva infantesa. Els líders en la recerca en màquines moleculars no biològiques són Alex Zettl i els seus col·legues als laboratoris Lawrence Berkeley i a la Universitat de California Berkeley. Han construït com a mínim tres mecanismes moleculars el moviment dels quals es controla des de la taula de treball amb un canvi de voltatge: un nanomotor nanotub, un actuador molecular,[9] i un oscil·lador de relaxació nanoelectromecanic.[10]
Un experiment que indica que el muntatge molecular posicional és possible va ser realitzat per Ho i Lee a la Universitat Cornell el 1999. Van fer servir un microscopi d'efecte túnel per moure una molècula individual de monòxid de carboni (CO) cap a un àtom individual de ferro (Fe) que estava en un cristall pla d'argent, i van lligar químicament el CO al Fe aplicant un voltatge.
Recerca actual
Nanomaterials
Això inclou subcamps que desenvolupen o estudien materials que tenen propietats singulars que sorgeixen de les seves dimensions a nanoescala.[12]
Els materials a nanoescala també es poden utilitzar per a aplicacions a l'engròs; moltes aplicacions comercials presents de nanotecnologia són d'aquest tipus.
S'han fet progressos utilitzant aquests materials per aplicacions mèdiques; vegeu Nanomedecina.
Desenvolupament d'aplicacions que incorporen nanopartícules semiconductores perquè siguin utilitzades en la pròxima generació de productes, com la tecnologia de pantalles, il·luminació, cèl·lules solars i imatges biològiques; vegeu punts quàntics.
Enfocaments de baix a dalt
Aquests enfocament procuren arranjar components més petits en muntatges més complexes.
>Els enfocaments que sorgeixen des del camp de síntesi química "clàssica" també apunten a dissenyar molècules amb forma ben definida (per exemple bis peptids]).)[13]
Les puntes dels microscopis de força atòmica es poden fer servir com una "capçal d'escriptura" a nanoescala per dipositar un producte químic en una superfície amb un patró desitjat en un procés anomenat Nanolitografia dip-pen. Això encaixa en el subcamp més gran de la nanolitografia.
Els dolls de ions focalitzats poden eliminar material directament, o fins i tot dipositar material quan s'apliquen alhora gasos precursors adequats. Per exemple, aquesta tècnica es fa servir rutinàriament per crear seccions per davall de 100 nm de material per anàlisi en microscopi electrònic de transmissió.
Enfocaments funcionals
Aquests enfocaments procuren desenvolupar components d'una funcionalitat desitjada sense considerar com es podrien muntar.
L'electrònica molecular procura desenvolupar molècules amb propietats electròniques útils. Llavors es podrien fer servir com components de molècula única en un dispositiu nanoelectronic.[16] per un exemple veure rotaxà.
La biomineralització (per exemple la petrificació) és bastant comú al món biològic i ocorre en bacteris, organismes unicel·lulars, plantes (per exemple fusta petrificada), i animals (invertebrats i vertebrats). Els mineralscristal·lins formats en aquest tipus d'ambient sovint presenten propietats mecàniques excepcionals (per exemple resistència, duresa, tenacitat) i tendeixen a formar estructures jeràrquiques que presenten ordre microestructural al llarg una gamma d'escales longitudinals o espacials. Típicament els minerals es cristal·litzen a partir d'un ambient que està per davall de la saturació respecte a certs elements metàl·lics com el silici, el calci i el fòsfor, els quals s'oxiden immediatament en condicions de pH neutre i baixa temperatura (0 - 40 graus C). La formació del mineral es pot produir dintre o a fora de la paret cel·lular d'un organisme, i hi ha reaccions bioquímiques específiques per a deposició mineral que inclouen lípids, proteïnes i carbohidrats. La importància de la maquinària cel·lular no es pot exagerar, i és gràcies a avenços en tècniques experimentals en biologia cel·lular i a la capacitat d'imitar l'ambient biològic que s'estan obtenint actualment progressos significatius.
[17][18][19][20][21][22]
Així, la majoria dels materials naturals (o biològics) són compostos complexes les propietats mecàniques dels quals són sovint excepcionals, considerant els components febles dels quals estan constituïts. Aquestes estructures complexes, que han sorgit de centenars de milions d'anys d'evolució, són materials que inspiren els científics interessats principalment en el disseny de materials nous amb propietats físiques excepcionals per obtenir alts rendiments en condicions adverses. Les característiques que els defineixen com la jerarquia, la multifuncionalitat, i la capacitat per auto reparar-se, s'estan investigant en l'actualitat.
[24]
Els blocs constructius bàsics comencen amb els 20 aminoàcids i continuen amb els polipèptids i polisacàrids. Aquests, al seu torn, componen les proteïnes bàsiques, que són els components primaris dels 'teixits tous ' comuns a la majoria dels biominerals. Amb ben bé més de 1000 proteïnes possibles, la recerca actual emfatitza l'ús de col·lagen, la quitina, la queratina, i l'elastina. Les fases 'dures' són sovint reforçades per minerals cristal·lins, que es nucleen i creixen en un ambient biocondicionat que determina la mida, forma i distribució dels cristalls individuals. Les fases de silicat més importants s'han identificat com hidroxiapatita, diòxid de silici, i aragonita. Utilitzant la classificació de Wegst i Ashby, s'han caracteritzat últimament les principals propietats mecàniques les estructures d'un cert nombre de ceràmiques biològiques, compòsits de polímers, elastòmers, i materials cel·lulars. Els sistemes seleccionats en cada classe s'estan investigant amb èmfasi en la relació entre la seva microestructura respecte d'una gamma d'escales de longitud i la seva resposta mecànica.
[25][26][27][28]
Prospectiva
Aquests subcamps procuren preveure quines invencions podria produir la nanotecnologia, o intenten proposar una agenda al llarg de la qual la investigació podria avançar. Sovint prenen una vista en perspectiva de la nanotecnologia, amb més èmfasi en les seves implicacions a la societat que en els detalls de com es podrien materialitzar de fet tals invencions.
La nanotecnologia molecular és un enfocament proposat que implica manipular molècules singulars de maneres deterministes controlades amb precisió. Això és més teòric que els altres subcamps i està més enllà de les capacitats actuals.
La nanorobòtica se centra en màquines autosuficients amb alguna funcionalitat que operen a nanoescala. Hi ha esperances per aplicar nanorobots en medicina,[29][30][31] però pot no ser fàcil fer-ho a causa d'uns quants desavantatges d'aquests dispositius.[32] No Obstant Això, el progrés en materials innovadors i metodologies s'ha demostrat amb algunes patents concedides sobre mecanismes de nanofabricació nous per a aplicacions comercials futures, els quals també contribueixen progressivament en el camí cap al desenvolupament de nanorobots amb l'ús de conceptes de nanobioelectronica.[33][34]
La matèria programable basada en àtoms artificials cerca dissenyar materials les propietats del qual es puguin controlar fàcilment, de manera reversible i externa.
Eines i tècniques
Hi ha uns quants desenvolupaments moderns importants. El microscopi de forces atòmiques (AFM) i el microscopi d'efecte túnel (STM) són dues primeres versions de sondes d'escombratge que van engegar la nanotecnologia. Hi ha altres tipus de microscòpia de sonda d'escombratge, tot va sorgir a partir de les idees del microscopi confocal d'escombratge desenvolupat per Marvin Minsky el 1961 i el microscopi acústic d'escombratge (SAM) desenvolupat per Calvin Quate i els seus col·laboradors durant els anys 1970, que fan possible veure estructures a nanoescala. La punta d'una sonda d'escombratge també es pot fer servir per manipular nanoestructures (un procés anomenat muntatge posicional). La metodologia de posicionament escombrant orientada la característica suggerida per Rostislav Lapshin sembla una forma que previsiblement permetrà implementar aquestes nanomanipulacions de mode automàtic. Tanmateix, això és encara un procés lent a causa de la baixa velocitat d'escombratge del microscopi. També es desenvolupaven diverses tècniques de nanolitografia com la nanolitografia òptica la litografia de raig X la litografia de raig d'electrons o la litografia nanoimpremta.
Un altre grup de tècniques de nanotecnologia inclouen les que es fan servir per a la fabricació de nanofilferros, les que es fan servir en la fabricació de semiconductors com la litografia ultraviolada profunda, la litografia de raigs d'electrons, el mecanitzat per raigs de ions focalitzats, litografia nanoimpremta, deposició de capes atòmica, i deposició de vapor molecular, i inclouen tècniques auto muntatge molecular com ales que fan servir copolímers dibloc. Tanmateix, totes aquestes tècniques són prèvies a l'era de la nanotecnologia, i són extensions en el desenvolupament d'avenços científics més que no tècniques ideades amb l'únic propòsit de la desenvolupar la nanotecnologia i eren resultats de la recerca en nanotecnologia.
L'enfocament de dalt a baix preveu nanomecanismes que s'han de construir peça per peça en etapes, tal com els elements que es fan a les fàbriques convencionals. La microscòpia de sonda d'escombratge és una tècnica important tant per a la caracterització com per la síntesi de nanomaterials. Els microscopis de força atòmica i els microscopis d'efecte túnel es poden fer servir per mirar superfícies i moure àtoms. Dissenyant puntes diferents per aquests microscopis, es poden fer servir per llaurar estructures en superfícies i per ajudar a guiar estructures automuntades. Actualment, és car i lent per a la producció en sèrie però molt adequat per a l'experimentació de laboratori.
Les tècniques més noves com la interferometria de polarització dual permeten als científics mesurar quantitativament les interaccions moleculars que tenen lloc a escala nanomètrica.
Inversió
Alguns països en vies de desenvolupament ja destinen importants recursos a la investigació en nanotecnologia. La nanomedicina és una de les àrees que més pot contribuir a l'avenç sostenible del Tercer Món, proporcionant nous mètodes de diagnòstic i cribratge de malalties, millors sistemes per a l'administració de fàrmacs i eines per al monitoratge d'alguns paràmetres biològics.
Actualment, al voltant de 40 laboratoris arreu del món canalitzen grans quantitats de diners per a la recerca en nanotecnologia. Unes 300 empreses tenen el terme "nano" en el seu nom, tot i que encara hi ha molt pocs productes al mercat.
Alguns gegants del món informàtic com IBM, Hewlett-Packard (HP), NEC Corporation i Intel inverteixen milions de dòlars a l'any en el camp de recerca. Els governs de l'anomenat Primer Món també s'han pres el tema molt seriosament, amb el clar lideratge del govern nord-americà, que per aquest any[Quan?] ha destinat 570 milions de dòlars a l'inciativa National Nanotechnology Initiative.[35]
A Espanya, els científics parlen de nanopressupostos. Però l'interès creix, com que hi ha hagut alguns congressos sobre el tema: a Sevilla, a la Fundació San Telmo, sobre oportunitats d'inversió, i a Madrid, amb una reunió entre responsables de centres de nanotecnologia de França, Alemanya i Regne Unit a la Universitat Autònoma de Madrid.[cal citació]
Acoblament interdisciplinari
La característica fonamental de la nanotecnologia és que constitueix un acoblament interdisciplinari de diversos camps de les ciències naturals que són altament especialitzats. Per tant, els físics juguen un important paper no només en la construcció del microscopi que fan servir per estudiar aquests fenòmens, sinó també sobre totes les lleis de la mecànica quàntica. Assolir l'estructura del material desitjat i les configuracions de certs àtoms fan jugar a la química un paper important. En medicina, el desenvolupament específic adreçat a nanopartícules promet ajuda al tractament de certes malalties. Aquí, la ciència ha assolit un punt en què les fronteres que separen les diferents disciplines han començat a diluir, i és precisament per aquesta raó per la qual la nanotecnologia també es refereix a ser una tecnologia convergent.
Una possible llista de ciències involucrades seria la següent:
Les presents aplicacions de la nanotecnologia són: explorar volcans, agafar informació de les missions espacials extraterrestres, simular la vida i el comportament d'insectes i altres animals, portar a terme operacions elementals en ambients perillosos (radioactius, submarins, corrosius, etc.), vigilar i activar alarmes en zones de seguretat, torneigs de sumo, catalitzadors, dessalinització de l'aigua, etc.
I com a futures aplicacions: nous sensors per a la medicina, materials més lleugers per a les indústries d'aeronàutica i automòbil, aparells tan comuns com impressores, reproductors de CDs, airbags, etc.
Ficció i nanotecnologia
La nanotecnologia i la seva utilització en la ficció han atret l'atenció dels estudiosos.[36][37][38][39] El primer ús dels conceptes de tipus nanotecnològics el trobem en la conferència titulada «There's Plenty of Room at the Bottom», exposada pel físic Richard Feynman el 1959.[40]
El llibre d'Eric Drexler Engines of Creation publicat el 1987 presentà al públic en general el concepte de la nanotecnologia. Des de llavors, la nanotecnologia va aprèxer amb freqüència, i en una àmplia gamma d'exemples, en la ficció, actuant sovint com a justificació de fets i coses inusuals i, fins i tot, desbaratades que apareixen en la ficció especulativa.[41]
Exemples notables
Arthur C. Clarke, en el relat curt The Next Tenants ("Els propers arrendataris") de 1956, descriu màquines petites que operen en microescala (una milionèsima d'un metre). Tot i, tècnicament, no es escala nanomètrica (mil milionèsima d'un metre), les màquines són el primer exemple fictici dels conceptes que són associats amb la nanotecnologia. El 1969 Robert Silverberg, en el relat curt How It Was when the Past Went Away, la nanotecnologia s'utilitza en la construcció dels altaveus estèreo.[41]
La Novel·la Prey de Michael Crichton fou un dels primers llibres temàtics vers nanotecnologia que tingué àmplia difusió,[42] l'argument de la novel·la versa entorn un eixam de nano-robots, de mida molecular, que desenvolupen la intel·ligència convertint-se en una amenaça a gran escala.
La novel·la The Lazarus Vendetta (‘La Vendetta Llàtzer’) de Robert Ludlum, també se centra al voltant de la nanotecnologia, centrant-se principalment en la seva capacitat per curar el càncer.[43]
La nanotecnologia també apareix en unes sèries televisives, com ara les sèries Stargate SG-1 i Stargate Atlantis, on pren la forma dels Replicadors i els Asura, respectivament. La sèrie de Trinity Blood compta amb unes nanomàquines trobades a Mart (nomenades nanomàquines Krusnik), que són presents en el cos de la protagonista (Abel Nighroad) i s'alimenten de les cèl·lules dels vampirs. Dins de l'univers de Star Trek, de Star Trek: La nova generació en endavant, els Borg empren nanomàquines, anomenades nanosondes, per assimilar els individus en el seu col·lectiu. En la nova versió de la sèrie Knight Rider, i la pel·lícula, la nanotecnologia és incorporada al Knight Industries Three Thousand (KITT), cosa que li permet canviar el color i fins i tot la forma, així com proporcionar funcions com per exemple la regeneració de si mateix.
A la sèrie de televisió El Nan Roig (Red Dwarf), els "nanobots" tenen un paper important en la trama de l'última entrega de la sèrie de tres.
En els videojocs la nanotecnologia és present en les successives versions de Metal Gear Solid, a Red Faction, Crysis, la sèrie Ratchet & Clank i Deus Ex per exemple.
A la sèrie mangaBattle Angel Alita: Last Order, el risc i el control de la nanotecnologia és el motor de la història.
A la pel·lícula The Day the Earth Stood Still (2008), el robot al·lienígena anomenat "Gort" es desintegra en un núvol de nanobots autorreplicants per tal de devorar la terra i les seves formes de vida en segons.
A la pel·lícula Avengers: Endgame (2019), el superheroi Iron Man construeix una nova armadura completament amb nanotecnologia. Es mostra com la seva armadura surt completament des de la peça on magatzema els nanobots, i es van juntant fins que donen forma a leva armadura. Mostra un nivell molt avançat de la nanotecnologia, ja que és capaç de controlar cada un d'ells amb el seu cervell, els nanobots donen forma a tot el que ell pensa o desitja.
↑Clarkson, AJ; Buckingham, DA; Rogers, AJ; Blackman, AG; Clark, CR «Nanostructured Ceramics in Medical Devices: Applications and Prospects». JOM, 56, 10, 2004, pàg. 38–43. DOI: 10.1007/s11837-004-0289-x. PMID: 11196953.
↑Levins CG, Schafmeister CE. The synthesis of curved and linear structures from a minimal set of monomers. Journal of Organic Chemistry, 70, p. 9002, 2005. doi:10.1002/chin.200605222
↑«Applications/Products». National Nanotechnology Initiative. Arxivat de l'original el 2010-11-20. [Consulta: 19 octubre 2007].
↑Das S, Gates AJ, Abdu HA, Rose GS, Picconatto CA, Ellenbogen JC. «Designs for Ultra-Tiny, Special-Purpose Nanoelectronic Circuits». IEEE Transactions on Circuits and Systems I, 54, 11, 2007, pàg. 2528–2540. DOI: 10.1109/TCSI.2007.907864.
↑Berg, J.M. et al., Biochemistry, 5th edn. (W.H. Freeman & Co., New York 2002)
↑Omori, M. and Watabe, N., Eds., Mechanisms of biomineralization in animals and plants, Tokai University Press, Tokyo (1980)
↑Perry, C.C., Silicification: The Processes by Which Organisms Capture and Mineralize Silica, Rev. Miner. Geochem., Vol. 54, p. 291 (2003)
↑Biomineralization, Mann, S., (Oxford University Press, 2005)
↑ Astrid Sigel, Helmut Sigel and Roland K.O. Sigel. Biomineralization: From Nature to Application. 4. Wiley, 2008 (Metal Ions in Life Sciences). ISBN 978-0-470-03525-2.
↑Currey, J.D., Mechanical properties of mother of pearl in tension, Proc Roy. Soc Lond B, Vol. 196, p. 443 (1997); The design of mineralized hard tissues for their mechanical functions, J. Exp. Biol., Vol. 202, p. 3285 (1999)
doi=url=http://jeb.biologists.org/cgi/pmidlookup?
↑Heuer, A.H., et al., Innovative Materials Processing Strategies: A Biomimetic Approach, Science, Vol. 255, p. 1098 (1992)
↑Whitesides, G.M., et al., Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures, Science, Vol. 254, p. 1312 (1991)
↑Aksay, I.A., et al., Self-Assembled Ceramics, Ann. Rev. Phys. Chem., Vol. 51, p. 601 (2000)
↑Sarikaya, M., et al., Mechanical property–microstructural relationships in abalone shell, Vol. 174, Materials Research Society (Pittsburgh, PA 1990) p. 109
↑Ghalanbor Z, Marashi SA, Ranjbar B «Nanotechnology helps medicine: nanoscale swimmers and their future applications». Med Hypotheses, 65, 1, 2005, pàg. 198–199. DOI: 10.1016/j.mehy.2005.01.023. PMID: 15893147.
↑Kubik T, Bogunia-Kubik K, Sugisaka M. «Nanotechnology on duty in medical applications». Curr Pharm Biotechnol., 6, 1, 2005, pàg. 17–33. PMID: 15727553.
↑Leary, SP; Liu, CY; Apuzzo, ML «Toward the Emergence of Nanoneurosurgery: Part III-Nanomedicine: Targeted Nanotherapy, Nanosurgery, and Progress Toward the Realization of Nanoneurosurgery». Neurosurgery, 58, 6, 2006, pàg. 1009–1026. DOI: 10.1227/01.NEU.0000217016.79256.16. PMID: 16723880.
↑Shetty RC «Potential pitfalls of nanotechnology in its applications to medicine: immune incompatibility of nanodevices». Med Hypotheses, 65, 5, 2005, pàg. 998–9. DOI: 10.1016/j.mehy.2005.05.022. PMID: 16023299.
↑Boukallel M, Gauthier M, Dauge M, Piat E, Abadie J. «Smart microrobots for mechanical cell characterization and cell convoying». IEEE Trans. Biomed. Eng., 54, 8, 2007, pàg. 1536–40. DOI: 10.1109/TBME.2007.891171. PMID: 17694877.
↑ 41,041,1Bly, Robert W., 2005, The Science In Science Fiction: 83 SF Predictions that Became Scientific Reality, BenBella Books, Inc., ISBN 1-932100-48-2
↑Schwarz, James A., Contescu, Cristian I., Putyera, Karol, 2004, Dekker Encyclopedia of Nanoscience and Nanotechnology, CRC Press, ISBN 0-8247-5050-0
Turkish television series This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Yargı – news · newspapers · books · scholar · JSTOR (January 2022) (Learn how and when to remove this template message) YargıPromotional posterAlso known asFamily SecretsGenreActionDramaPsychological thrillerPolice proceduralCrimeWri...
Paok Papua Erythropitta macklotii Status konservasiRisiko rendahIUCN103656444 TaksonomiKerajaanAnimaliaFilumChordataKelasAvesOrdoPasseriformesFamiliPittidaeGenusErythropittaSpesiesErythropitta macklotii (Temminck, 1834) Tata namaSinonim taksonErythropitta erythrogaster macklotiiProtonimPitta erythrogaster macklotii lbs Paok Papua ( Erythropitta macklotii ) adalah salah satu spesies burung paok . Dahulu ia dianggap sebagai subspesies dari paok perut merah . Ia dijumpai di Kepulauan Aru, New Gu...
Hideyo Amamoto天本 英世Hideyo Amamoto. diambil pada tahun 1954.Nama lainEisei AmamotoTahun aktif1954-2003 Hideyo Amamoto (天本 英世code: ja is deprecated , Amamoto Hideyo, 2 Januari 1926 – 23 Maret 2003) atau nama kecilnya adalah Eisei Amamoto, merupakan seorang pemeran berkebangsaan Jepang. Berkarier di dunia film sejak tahun 1954 dan sampai tahun 2003, dan dia menjadi yang terkenal saat bermain di film-film terkenal seperti Doktor Grimreaper dalam serial K...
SMA Negeri 3 MedanInformasiDidirikan1954JenisSekolah NegeriNomor Statistik Sekolah30 1 07 60 03 002Nomor Pokok Sekolah Nasional10210856Kepala SekolahMukhlis ,S.PdJurusan atau peminatanIPA dan IPSRentang kelasX - MIA, X - IS, XI IPA, XI IPS, XII IPA, XII IPSKurikulumKurikulum Tingkat Satuan Pendidikan dan Kurikulum 2013Jumlah siswa1500-anNEM terendah8,65 [Nilai rata - rata UN] Jalur Nilai UN 2013 AlamatLokasiJl. Budi Kemasyarakatan 3, Medan, Sumatera Utara, IndonesiaTel./Faks.061-...
Putri ViollaLahir26 Mei 1983 (umur 40)Malang, Jawa TimurKebangsaanIndonesiaAlmamaterUniversitas BrawijayaPekerjaanPembawa acara beritaReporterDikenal atasKabar Arena di tvOneOrang tuaPratap BasukiAndi Emmy Soraya Putri Violla (lahir 26 Mei 1983) merupakan seorang pembawa acara berita dan reporter Indonesia. Saat ini ia bergabung di stasiun televisi tvOne. Biografi Ia merupakan anak dari pasangan dari Pratap Basuki dan Andi Emmy Soraya, dan alumni SMA Negeri 1 Malang dan fakultas hukum U...
Questa voce sull'argomento calciatori nicaraguensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Elvis Pinel Nazionalità Nicaragua Calcio Ruolo Centrocampista Squadra Real Estelí Carriera Squadre di club1 2010-2011 Managua? (?)2011- Real Estelí131 (24) Nazionale 2011- Nicaragua28 (1) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → indica un trasferimento in prestito. ...
كينغدوم هارتسKingdom Hearts الصورة تنتمي إلى أول جزء في السلسة النوع تقاطع (خيال)، ولعبة فيديو الخيال العلمي [لغات أخرى]، ولعبة أكشن تقمص الأدوار، ولعبة أكشن، وتقطيع وذبح، ولعبة فيديو رقصات، ولعبة فيديو تقمص الأدوار المطور(ون) سكوير إينيكس، جوبيت...
System on a chip (SoC) designed by Apple Inc. Apple A11 BionicGeneral informationLaunchedSeptember 12, 2017; 6 years ago (2017-09-12)DiscontinuedApril 15, 2020; 4 years ago (2020-04-15)Designed byApple Inc.Common manufacturer(s)TSMC[1]Product codeAPL1W72[2]Max. CPU clock rateto 2.38 [3] GHzCacheL1 cache64 KB instruction, 64 KB data[4]L2 cache8 MBArchitecture and classificationApplicationMobileTechnology node10 nm ...
Camouflage to counteract self-shading Many animals, such as this grey reef shark, are countershaded. Illustration from the artist Abbot Thayer's 1909 book on camouflage of a Luna caterpillar Actias lunaa) in position b) inverted. Countershading, or Thayer's law, is a method of camouflage in which an animal's coloration is darker on the top or upper side and lighter on the underside of the body.[1] This pattern is found in many species of mammals, reptiles, birds, fish, and insects, bo...
Рыболовный ярус в собранном виде Я́русный лов — метод промышленного рыболовства, при котором для лова рыбы используются крючки с наживкой, прикреплённые к крючковому орудию лова — пелагическому или донному ярусу. Таким способом чаще всего ловят меч-рыбу, тунца, па...
Balai kota Précy-sur-Marne. Précy-sur-MarneNegaraPrancisArondisemenMeauxKantonMitry-MoryAntarkomunetidak ada pada 2007Pemerintahan • Wali kota (2008-2014) Yves Duteil • Populasi1480Kode INSEE/pos77376 / 2 Population sans doubles comptes: penghitungan tunggal penduduk di komune lain (e.g. mahasiswa dan personil militer). Précy-sur-Marne merupakan sebuah komune di departemen Seine-et-Marne di region Île-de-France di utara-tengah Prancis. Demografi Pada sensus 19...
Mechanism with bendable rotation axis U-joint redirects here. For the plumbing fixture, see U-bend. A universal joint A universal joint (also called a universal coupling or U-joint) is a joint or coupling connecting rigid shafts whose axes are inclined to each other. It is commonly used in shafts that transmit rotary motion. It consists of a pair of hinges located close together, oriented at 90° to each other, connected by a cross shaft. The universal joint is not a constant-velocity joint.&...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Revista Hispánica Moderna – news · newspapers · books · scholar · JSTOR (October 2021) (Learn how and when to remove this message) Academic journalRevista Hispánica ModernaDisciplineHispanic and Luso-Brazilian literary and cultural studiesLanguageSpanish, Por...
Les éliminatoires de la zone Amérique du Sud pour la Coupe du monde 2018 sont organisées dans le cadre de la Confédération sud-américaine de football (CONMEBOL) et concernent 10 sélections nationales pour 4 ou 5 places qualificatives. Europe - Afrique - Amérique du Nord, Amérique centrale et CaraïbesAmérique du Sud - Asie - Océanie Format Le premier tour des qualifications, unique dans cette zone, consiste en un mini-championnat en matchs aller-retour regroupant les dix pays engag...
English peer, soldier and courtier William Montagu, 2nd Baron MontaguArms of Montagu: Argent, three fusils conjoined in fess gulesBornc.1275Died18 October 1319GasconySpouse(s)Elizabeth de MontfortIssueJohn MontaguWilliam Montagu, 1st Earl of SalisburySimon MontaguEdward Montagu, 1st Baron MontaguAlice MontaguKatherine MontaguMary MontaguElizabeth MontaguHawise MontaguMaud MontaguIsabel MontaguFatherSimon MontaguMotherHawise St Amand, or Isabel (surname unknown) William Montagu, 2nd Baron Mont...
Bilateral treaty This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Treaty of Accession 1979 – news · newspapers · books · scholar · JSTOR (August 2013) (Learn how and when to remove this message) Treaty concerning the accession of the Hellenic Republic to the European Economic Community and to the European Ato...
This glossary provides an overview of terms used in the description of lichens, composite organisms arising from algae or cyanobacteria living symbiotically among filaments of multiple fungus species.[1][2] Erik Acharius Erik Acharius, known as the father of lichenology, coined many lichen terms still in use today around the turn of the 18th century. Before that, only a couple of lichen-specific terms had been proposed. Johann Dillenius introduced scyphus in 1742 to describe ...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Neoclassical ballet – news · newspapers · books · scholar · JSTOR (September 2014) (Learn how and when to remove this message) Alexandra Danilova and Serge Lifar, Apollon Musagète, 1928 Neoclassical ballet is the style of 20th-century classical ballet exemplif...