Model M/M/1![]() El M/M/1 és un model en teoria de cues que considera un únic servidor i població infinita i que pot ser utilitzar per a aproximar sistemes senzills. Seguint la notació de Kendall, indica un sistema on:
AnàlisiUn sistema així es pot modelar com un procés de naixements-morts, on cada estat representa el nombre d'usuaris al sistema. Com que el sistema té una cua infinita i població il·limitada, el nombre d'estats que el sistema pot ocupar és infinit: són l'estat 0 (no hi ha cap usuari al sistema), l'estat 1 (hi ha un usuari), l'estat 2 (hi ha dos usuaris), etc. Ja que la cua mai s'emplenarà i la població és infinita, la taxa de natalitat (taxa d'arribades), λ, és constant per a cada estat. La taxa de mortalitat (taxa de servei), μ, també és constant per a tots els estats (excepte l'estat 0). De fet, independentment de l'estat, podem només podem trobar dos esdeveniments:
Ara és fàcil veure que el sistema només és estable si λ < μ. De fet, si la taxa de mortalitat és inferior a la taxa de naixements, el terme mitjà d'usuaris a la cua creixerà a l'infinit, és a dir, el sistema no estarà equilibrat. Aquest model pot revelar mesures de rendiment interessants sobre el sistema observat; per exemple:
Solucions estacionàriesPodem definir La probabilitat que el sistema estigui en l'estat i es pot calcular de la següent manera: Amb aquesta informació, ens és possible trobar diverses mesures de rendiment. Per exemple:
ExempleHi ha moltes situacions on es pot fer ús del model M/M/1. Per exemple, podem imaginar una oficina de correus amb un sol empleat i, per tant, una sola cua. La clientela arriba, s'uneix a la cua, és servida i abandona el sistema. Si les arribades són un procés de Poisson i el temps de servei és exponencial, és possible utilitzar un model M/M/1, podent així calcular fàcilment el nombre esperat de persones a la cua, les probabilitats que hagin d'esperar durant un temps determinat, etc. |