Una constant matemàtica és una quantitat que per definició no canvia mai el seu valor, en oposició a les variables matemàtiques. Mentre que les constants físiques depenen de mesures experimentals, les constants matemàtiques no depenen de cap propietat física. Solen ser nombres reals o nombres complexos.
Constants en matemàtiques avançades
Aquestes són constant que es troben freqüentment en les matemàtiques avançades.
Les constants α i δ de Feigenbaum
Iterar en funcions contínues és un dels exemples més simples de models per a sistemes dinàmics.[1] Les dues constants de Feigenbaum, que duen el nom del físic Mitchell Feigenbaum, apareixen en aquests processos iteratius: són invariants matemàtiques de mapes logístics amb punts màxims quadràtics[2] i els seus diagrames de bifurcació. En particular, la constant α és el ratio entre l'amplada d'una punxa i l'amplada d'una de les seves dues subpunxes, i al constant δ és el límit del ràtio de cada interval de bifurcació amb el següent entre cada bifurcació en què es duplica el període.
El mapa logístic és un mapa polinòmic, sovint citat com l'exemple arquetípic de com el comportament catòtic pot aparèixer a partir d'equacions dinàmiques no lineals molt simples. El mapa es va popularitzar en un article seminari de 1976 del biologista australià Robert May,[3] en part com a model demogràfic de temps discret anàleg a l'equació logística creada per Pierre François Verhulst. L'equació de diferències pretén capturar els dos efectes de reproducció i d'inanició.
El valor numèric d'α és d'aproximadament 2.5029, mentre que el valor numèric de δ és aproximadament de 4.6692.
El nombre φ, també anomeneat la secció àuria, apareix freqüentment en geometria, en particular en figures amb simetria pentagonal. En efecte, la longitud de la diagonal d'un pentàgon és φ vegades el seu costat. Els vèrtexs d'un icosaedre regular són els de tres rectangles auris ortogonals. A més, apareix en la successió de Fibonacci, relacionada amb el creixement per recursivitat.[5]Kepler va demostrar que és el límit del ràtio de nombres de Fibonacci consecutius.[6] La secció àuria té la convergència més lenta de tot nombre irracional.[7] És, per aquesta raó, un dels pitjors casos del teorema d'aproximació de Lagrange i és un cas extrem de la desigualtat de Hurwitz per aproximacions diofàntiques. Aquest pot ser el motiu pel qual apareixen sovint angles propers a la secció àuria en el camp de la fil·lotaxi (el creixement de les plantes).[8] És aproximadament igual a 1.6180339887498948482, o, més precisament 2⋅sin(54°) =
La constant d'Euler–Mascheroni apareix en el tercer teorema de Mertens i està relacionada amb la funció gamma, la funció zeta i diverses altres integrals i sèries.
La constant de Conway és la taxa de creixement invariant de totes les cadenes derivades similars de la seqüència "look-and-say" ("mira i digues") (excepte per la trivial).[9]
Ve donada per la única arrel positiva d'un polinomi de grau 71 amb coeficients enters.[9]