Bolesti koje su u vezi sa defektima motornih proteina
Važnost motornih proteina u ćelijama postaje očita kad se ne ispunjavaju svoju funkciju. Naprimjer, nedostaci kinezina su identificirani kao uzrok Charcot-Marie-Tooth bolesti i nekih bolesti bubrega. Nedostaci dineina mogu dovesti do hronične infekcijedišnih puteva ako treplje ne funkcioniraju bez dineina. Brojni nedostaci miozina odnose se na stanja bolesti i genetičkih kontroliranih sindroma. Zbog nedostatka miozina II, neophodnog za kontrakciju mišića, oštećenja u mišićima miozina predvidljivo izaziva miopatije. Zbog toga što je miozin II potreban za proces slušanja doprinosom strukture steretreplji, defekt u nekonvencionalnom miozinu može dovesti do Usher sindroma i ne-sindromske gluhoće.[6]
Citoskeletni motorni proteini
Motorni proteini koji se koriste i u citoskeletu za kretanje, spadaju u dvije kategorije, a na temelju njihovih supstrata: aktinski motori poput miozina se kreću zajedno sa mikrofilamentima, preko interakcije s aktinom. Mikrotubulni motori, kao što su dinein i kinezin premještaju zajedno mikrotubule, putem interakcije s tubulinom. Postoje dvije osnovne vrste mikrotubulskih motora: plus-kraj motori i minus kraju motori, ovisno o smjeru u kojim "hoda" uz mikrotubulske snopove unutar ćelije.
Aktinski motori
Miozin
Natporodica miozinskihaktinskih motornih proteina koji pretvaraju hemijsku energiju ATP u mehaničku, koja generira snagu i kretanje. Prvoidentificirani miozin, miozin II, je odgovoran za stvaranje mišićne kontrakcije. Miozin II je izduženi protein koji je oblikovan od dva teška lanca s motorim glavama i dva lahka lanca. Svaka glava miozina sadrži aktin i vezani ATP. Miozinske glave vežu i hidroliziraju ATP, koji daje energiju kretanja prema plus kraju aktinske niti. Miozin II je također značajan u procesu ćelijske diobe. Naprimjer, nemišićnia bipolarna, tanka vlakna miozina II daju snagu kontrakcije koja je potrebna da se, tokom citokineze, ćelija podijeli u dvije ćelije kćeri. Osim miozina II, i mnogi drugi tipovi miozina su odgovorni za različite oblike kretanja nemišićnih ćelija. Naprimjer, miozini I su uključeni u unutarćelijskui organizaciju i izbočine aktinom bogatih struktura na površini ćelije. Miozin V je uključen u vezikule i transportne organele.[7] Miozini XI učestvuju u citoplazmatskoj struji, gdje se zajedničko kretanje struja u određenom smjeru mikrofilamenatnim mrežama u ćeliji omogućuju organele i citoplazma.[8] Eighteen different classes of myosins are known.[9]
Kinezini su grupa povezanih motornih proteina koji koriste puteve mikrotubula i anterogradnog pokreta. Oni su od vitalnog značaja za formiranje diobenog vretena i odvajanju hromosoma u mitozi i mejozi i odgovorni za naginjanje mitohondrija, Golgijevog tijela i vezikula u eukariotskim ćelijama. Kinezini imaju po dva teška i lahka lanca po aktivnom motoru. Dva loptasta domena motornih glava i teških lanaca mogu (hidrolizom) hemijsku energiju ATP pretvoriti u mehanički rad za kretanje uz mikrotubule.
[11] Pravac u kojem se prevozi teret može biti prema plus- ili minus-kraju, u zavisnosti od vrste kinezina. U principu, kinezini sa N-terminalnim motornim domenom prenose teret prema plus krajevima mikrotubula koji se nalaze na periferiji ćelije, dok kinezini sa C-krajevima motornih domena tereta nose prema minus krajevima mikrotubula koji se nalaze na jedru. Poznato je 14 različitih varijanti porodice kinezina, uz neke dodatne kinezinolike, kao što su proteini koji se ne mogu svrstati u ovu porodicu.[12]
Dineini su mikrotubulski motori sposobni za retrogradne klizne pokrete. Dineinski kompleksi su mnogo veći i kompleksniji nego kinezinski i miozinski motori. Dienini se sastoje od dva ili tri teška lanca i velikog i varijabilnog broja povezanih lahkih lanaca. Mogu obavljati unutarćelijski transport celularni minus krajem mikrotubula koji se nalazi u ocentru organizacije mikrotubule, u neposrednoj blizini jedra.[13] Porodica dineina ima dvije velike grane. Jedna je aksonemski dinein koji olakšava pokrete cilija i bičeva i brzih i učinkovitih kliznih pokreta mikrotubula. Drugi je citoplazmatski dinein, koji olakšava transport unutarćelijskih tereta. Od 15 vrsta aksonemskog dineina, poznata su samo dva citoplazmatska oblika.[14]
Nasuprot životinjama, gljivama i nevaskularnim biljkama, ćelijama cvjetnicas nedostaju dineinski motori. Međutim, one imaju veći broj različitih kinezina. Mnogi od tih iz grupe biljno specifičnih kinezina, specializirani su za funkcije tokom mitoze.[15] Biljne ćelije se razlikuju od životinjskih po tome što imaju ćelijski zid. Tokom mitoze, novi ćelijski zidovi nastaju formiranjem ćelijske ploče, počevši u središte ćelije. Taj proces olakšan je mitoznim fragmoplastom, nizom mikrotubula koji jedinstven za biljne ćelije. Izgradnja ćelijske ploče i na kraju novog ćelijskog zida zahtijeva kinezinu slične motorne proteine.[16]
Od ostalih motornih proteina koji su bitni za diobu biljnih ćelija, tu jekinezinoliki kalmodulin-vezujući protein (KCBP), koji je jedinstvenza biljke i dio kinezina i dio miozina.[17]
Osim pomenutih motornih proteina, postoji mnogo više vrsta proteina koji mogu formirati snagu i moment sile u ćeliji. Mnogi od tih molekulskih motora su sveprisutni i u o prokariotskim i eukariotskim ćelijama, iako su neki, poput onih koji su uključeni u citoskeletne elemenate ili hromatin, jedinstven za eukariote. Motorni protein prestin,[18] se ispoljama kod sisara u kohlearnim vanjskim ćelijama kose, daje mehaničko ojačanje pužnice. To je istosmjerni napon za pretvaranje snage, koji djeluje na mikrosekunde i posjeduje piazoelektrična svojstva.
^Campbell N. A.; et al. (2008). Biology. 8th Ed. Person International Edition, San Francisco. ISBN978-0-321-53616-7. Eksplicitna upotreba et al. u: |author= (pomoć)
^Sofradžija A., Šoljan D., Hadžiselimović R. (2004). Biologija 1. Svjetlost, Sarajevo. ISBN9958-10-686-8.CS1 održavanje: više imena: authors list (link)
^Međedović S., Maslić E., Hadžiselimović R. (2002). Biologija 2. Svjetlost, Sarajevo. ISBN9958-10-222-6.CS1 održavanje: više imena: authors list (link)
^Alberts B.; et al. (2002). Molecular Biology of the Cell, 4th Ed. Garland Science. ISBN0-8153-4072-9. Eksplicitna upotreba et al. u: |author= (pomoć)
^Bajrović K, Jevrić-Čaušević A., Hadžiselimović R., Eds. (2005). Uvod u genetičko inženjerstvo i biotehnologiju. Institut za genetičko inženjerstvo i biotehnologiju (INGEB) Sarajevo. ISBN9958-9344-1-8.CS1 održavanje: više imena: authors list (link)
^Miki H, Okada Y, Hirokawa N (2005). "Analysis of the kinesin superfamily: insights into structure and function". Trends in Cell Biology. 15 (9): 467–476. doi:10.1016/j.tcb.2005.07.006. PMID16084724.CS1 održavanje: upotreba parametra authors (link)
^Mallik R, Gross SP (2004). "Molecular motors: strategies to get along". Current Biology. 14 (22): R971–R982. doi:10.1016/j.cub.2004.10.046. PMID15556858.CS1 održavanje: upotreba parametra authors (link)
^Vanstraelen M, Inze D, Geelen D (2006). "Mitosis-specific kinesins in Arabidopsis". Trends in Plant Science. 11 (4): 167–175. doi:10.1016/j.tplants.2006.02.004. PMID16530461.CS1 održavanje: upotreba parametra authors (link)
^Dallos P, Fakler B (2002). "Prestin, a new type of motor protein". Nat. Rev. Mol. Cell Biol. 3 (2): 104–11. doi:10.1038/nrm730. PMID11836512.CS1 održavanje: upotreba parametra authors (link)