Mehanosenzitivni kanali, mehanosenzitivni ionski kanali ili istegnuti ionski kanali su membranski proteini sposobni da odgovore na mehanički stres u širokom dinamičkom rasponu vanjskih mehaničkih podražaja.[1][2][3][4][5][6] Prisutni su u membranama organizama iz tri domena života: bakterije, archaea i eukarioti.[7] Oni su senzori za brojne sisteme uključujući čula dodira, sluha i ravnoteže, kao i učešće u kardiovaskularnoj regulaciji i osmotskoj homeostazi (npr. žeđ). Kanali variraju u selektivnosti za prožimajuće ione, od neselektivnih između aniona i kationa u bakterijama, do selektivnih kationa, omogućavajući prolaz Ca2+, K+ i Na< sup>+ kod eukariota, i visoko selektivni K+ kanali kod bakterija i eukariota.
Svi organizmi, i očigledno sve vrste ćelija, osećaju i reaguju na mehaničke podražaje.[8] MSC-ovi funkcionišu kao mehanotransduktori sposobni da generišu i električne i ionske signale, kao odgovor na spoljašnje ili unutrašnje [9] stimulanse.[10] Pod ekstremnim turgorom u bakterijama, neselektivni MSC kao što su MSCL i MSCS služe kao sigurnosni ventili za sprečavanje lize. U specijalizovanim ćelijama viših organizama, drugi tipovi MSC-a su vjerovatno osnova čula sluha i dodira i osećaju stres potreban za mišićnu koordinaciju. Međutim, nijedan od ovih kanala nije kloniran. MSC-ovi također omogućavaju biljkama da razlikuju gore od dolje osjećajem sile gravitacije. MSC nisu osjetljivi na pritisak, ali su osjetljivi na lokalni stres, najvjerovatnije napetost u okolnom lipidnom dvosloju.[11]
Klasifikacija
MS se mogu klasifikovati na osnovu tipa iona za koji su propusni.
Kationski selektivni MSC: Kao što ime sugerira, pokazuju selektivnu permeabilnost za pozitivne ione, a najselektivniji kanali su oni za K+. Najčešći eukariotski MSC su za kationski selektivni prolazak Na+, K+ i Ca2+, ali ne i Mg2+. Imaju jednokanalni opseg provodljivosti (25-35 pS) i blokirani su trovalentnim ionom gadolinija. K+ selektivni MSC-ovi kao što je TREK-1 nisu blokirani od strane Gd3+.[12]
Anionski kanali: pokazuju značajnu permeabilnost za negativne ione i nisu dominantni kao kationski MS. Imaju veliki raspon provodljivosti (> 300pS).
Neselektivni ionski kanali: Kao što naziv govori, ne razlikuju pozitivne i negativne kanale koji su češći za arheje i bakterije, ali se rijetko nalaze u eukariotima.[13]
Da bi se protein smatrao mehanosenzitivnim, mora odgovoriti na mehaničku deformaciju membrane. Mehaničke deformacije mogu uključivati promjene u napetosti, debljini ili zakrivljenosti membrane. Mehanosenzitivni kanali reaguju na napetost membrane promjenom svoje konformacije između otvorenog i zatvorenog stanja.[14][15] Jedan tip mehanički osetljivih ionskih kanala aktivira specijalizovane senzorne ćelije, kao što su spužnične trepljasate ćelije i neki dodirni senzorni neuroni, kao odgovor na sile primenjene na proteine.[16][17]
Aferentna nervna vlakna odgovorna za detekciju senzornog stimulusa i povratnu informaciju posebno su osjetljiva na stimulaciju. To je rezultat specijaliziranih mehanoreceptorskih ćelija koje su superponirane na aferentna nervna vlakna. Ionski kanali aktivirani rastezanjem nalaze se na ovim mehanoreceptorskim ćelijama i služe za snižavanje praga akcijskog potencijala, čineći aferentne nerve osjetljivijim na stimulaciju. Aferentni nervni završeci bez mehanoreceptorskih ćelija nazivaju se slobodnim nervnim završecima. Oni su manje osjetljivi od inkapsuliranih aferentnih vlakana i općenito funkcioniraju u percepciji bola.[18]
Utvrđeno je da su i kanali koji su obično poznati samo kao "naponski" ili "ligandski" također mehanički osjetljivi. Kanali pokazuju mehaničku osjetljivost kao opće svojstvo. Međutim, mehanički stres utiče na različite tipove kanala na različite načine. Kanali sa naponom i ligandom mogu se neznatno modificirati mehaničkom stimulacijom, što bi moglo malo promijeniti njihovu reakciju ili propusnost, ali i dalje reaguju prvenstveno na napon ili ligande.[26]
Transdukcijski mehanizmi
Postoje dva različita tipa kanala koji se aktiviraju rastezanjem između kojih je važno razlikovati: mehanički zatvorene kanale, na koje direktno utiču mehaničke deformacije membrane, i mehanički osjetljive kanale, koji se otvaraju sekundarnim glasnicima oslobođenim od pravog mehanički zatvorenog kanala.[19]
Pronađena su dva različita mehanizma za otvaranje ionskih kanala aktiviranih istezanjem: mehaničke deformacije u ćelijskoj membrani mogu povećati vjerovatnoću otvaranja kanala. Proteini vanćelijskog matriksa i citoskeleta vezani su za van- i unutarcitoplazmatske domene ionskih kanala aktiviranih rastezanjem. Napetost na ovim mehanosenzornim proteinima uzrokuje da ti proteini djeluju kao signalni intermedijer, što rezultira otvaranjem jonskog kanala.[19] Svi poznati ionski kanali aktivirani rastezanjem u prokariotskim ćelijama su pronađeni da se otvori direktnom deformacijom membranskog lipidnog dvosloja.[21] Kanali za koje se pokazalo da isključivo koriste ovaj mehanizam gajtinga su TREK-1 i TRAAK kanali. U studijama koje su koristile ćelije za kosu sisara, mehanizam koji povlači proteine vezane iz intra- i ekstra-citoplazmatskog domena kanala za citoskelet i vanćelijski matriks, je najvjerovatniji model za otvaranje ionskih kanala.< ref name="López-Larrea"/>
Mehanička deformacija ćelijske membrane može se postići brojnim eksperimentalnim intervencijama, uključujući magnetsko aktiviranje nanočestica. Primjer za to je kontrola priliva kalcijaaksonima i dugmadi unutar neuronskih mreža.[27] Treba imati na umu da ovo nije indikacija 'magnetne stimulacije' mehanosenzitivnih kanala.
Prokariotski model. Kanal se otvara kao odgovor na deformaciju membrane (zelene strelice). Adaptirano iz Lumpkin et al.[28]
Model trepljaste ćelije sisara. Kanal se otvara preko priveznika kao odgovor na poremećaj u vanćelijskom matriksu ili citoskeletu. Slika prilagođena iz Lumpkin et al.[28]
Neki MS kanali koji su klonirani i okarakterizirani. Podaci prilagođeni iz Martinac, 2001[29]
MS je također sugeriran kao potencijalna meta za antibiotike, razlog za ovu ideju je da su i McsS i MscL visoko konzervirani među prokariotima, ali njihovi homolozi nisu pronađeni kod životinja.[30] što ih čini izuzetnim potencijalom za dalje studije.
U neuronima sisara, otvaranje ionskih kanala depolarizira aferentni neuron stvarajući akcijski potencijal sa dovoljnom depolarizacijom.[18] Kanali se otvaraju kao odgovor na dva različita mehanizma: prokariotski model i model trepljaste ćelije sisara.[21][22] Pokazalo se da ionski kanali aktivirani rastezanjem otkrivaju vibracije , pritisak, rastezanje, dodir, zvukove, okus, miris, toplotu, jačinu zvuka i vid.[19][20][23] Ionski kanali koji se aktiviraju istezanjem kategorizirani su u tri različite "natporodice": ENaC/DEG , TRP porodica i K1 selektivna porodica. Ovi kanali su uključeni u tjelesne funkcije kao što je regulacija krvnog pritiska.[26] Pokazalo se da su povezani sa mnogim kardiovaskularnim bolestima.[22] Kanali aktivirani rastezanjem prvi su uočeni u kokošijim skeletnim mišićima, što su otkrili Falgunija Guharaya i Frederika Sachsa 1983. godine, a rezultati su objavljeni 1984.[31] Od tada su pronađeni kanali aktivirani rastezanjem u ćelijama od bakterija do ljudi, kao i biljaka.
Otvaranje ovih kanala je centralno za odgovor neurona na pritisak, često osmotski i krvni pritisak, kako bi se regulisao protok iona u unutrašnjem okruženju.[21]
Struktura
Natporodica ENaC/DEG
ASIC
Postoji šest poznatih ASIC podjedinica, ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 i ASIC4, koje imaju dva transmembranska domena, vanćelijske i unutarćelijske petlje i C- i N-krajeve. Ove ASIC podjedinice vjerovatno formiraju tetramere s različitom kinetikom, pH osjetljivošću, distribucijom tkiva i farmakološkim svojstvima.[19]
Natporodica TRP
Postoji sedam potporodica unutar natporodice TRP: TRPC (kanonski), TRPV (vaniloid), TRPM (melastatin), TRPP (policistin), TRPML (mukolipin), TRPA (ankirin) i TRPN (sličan NOMPC). TRP proteini tipski se sastoji od šest transmembranskih domena, S1, S2, S3, S4, S5 i S6, sa porama između S5 i S6. Sadrže unutarćelijske N- i C-krajeve, koji formiraju tetramere i razlikuju se po dužini i domenu. Unutar kanala postoje ankirini, koji su strukturni proteini koji posreduju u interakcijama protein-protein, i smatra se da doprinose modelu vezivanja otvaranja kanala aktiviranog rastezanjem. NOMPC, identifikovan u mehanotransdukciji D. melanogaster i član potporodice TRPN, sadrži relativno veliki broj ankirina.[21]
Naptporodica K1-selektivnih
K2P kanali se sastoje od šest potporodica i sadrže četiri transmembranska domena, koji formiraju po dvije pore između domena 1-2 i 3-4. K2P kanali također sadrže kratki N-terminalni domen i C-terminal koji varira po dužini. Postoji i veliki vanćelijski linkerski region između domena 1 i prve pore formirane između domena 1-2.[19]
Klinički značaj
Ionski kanali aktivirani rastezanjem obavljaju važne funkcije u mnogim različitim područjima tijela. Arterije otporne na miogenu konstrikciju zavisne od pritiska zahtijevaju ove kanale za regulaciju u glatkim mišićima arterija.[20] Utvrđeno je da se koriste za detekciju zapremine kod životinja i regulaciju krvnog pritiska .[26] Pokazalo se da bakterije smanjuju hidrostatski pritisak pomoću MscL i MscS kanala.[26]
Patologije povezane sa ionskim kanalima aktiviranim istezanjem
Pokazalo se da gadolinij (Gd3+) i drugi lantanidi blokiraju funkciju ionskog kanala aktiviranog rastezanjem. Prikazan je peptidni toksin izolovan iz čileanske ružine tarantule (Grammostola rosea, sinonimG. spatulata), mehanotoksin 4 (GsMTx4) da inhibira ove kanale sa vanćelijske strane, ali ne inhibira sve ionske kanale aktivirane rastezanjem, a posebno nema efekta na 2p kanale.[26]
Lista bolesti povezanih sa mehanosenzitivnim kanalima
^Hackney, CM; Furness, DN (1995). "Mechanotransduction in vertebrate hair cells: structure and function of the stereociliary bundle". Am J Physiol. 268 (1 Pt 1): C1–138. doi:10.1152/ajpcell.1995.268.1.C1. PMID7840137.
^Tay A, Dino DC (17. 1. 2017). "Magnetic Nanoparticle-Based Mechanical Stimulation for Restoration of Mechano-Sensitive Ion Channel Equilibrium in Neural Networks". Nano Letters. 17 (2): 886–892. doi:10.1021/acs.nanolett.6b04200. PMID28094958..