MSH2

MSH2
Dostupne strukture
PDBPretraga ortologa: PDBe RCSB
Spisak PDB ID kodova

2O8B, 2O8C, 2O8D, 2O8E, 2O8F, 3THW, 3THX, 3THY, 3THZ

Identifikatori
AliasiMSH2
Vanjski ID-jeviOMIM: 609309 MGI: 101816 HomoloGene: 210 GeneCards: MSH2
Lokacija gena (čovjek)
Hromosom 2 (čovjek)
Hrom.Hromosom 2 (čovjek)[1]
Hromosom 2 (čovjek)
Genomska lokacija za MSH2
Genomska lokacija za MSH2
Bend2p21-p16.3Početak47,403,067 bp[1]
Kraj47,663,146 bp[1]
Lokacija gena (miš)
Hromosom 17 (miš)
Hrom.Hromosom 17 (miš)[2]
Hromosom 17 (miš)
Genomska lokacija za MSH2
Genomska lokacija za MSH2
Bend17 E4|17 57.87 cMPočetak87,979,758 bp[2]
Kraj88,031,141 bp[2]
Obrazac RNK ekspresije
Više referentnih podataka o ekspresiji
Ontologija gena
Molekularna funkcija vezivanje sa DNK
nucleotide binding
protein homodimerization activity
mismatched DNA binding
dinucleotide insertion or deletion binding
ADP binding
centromeric DNA binding
oxidized purine DNA binding
single-stranded DNA binding
oštećeno vezivanje sa DNK
ATPase activity
protein C-terminus binding
GO:0001948, GO:0016582 vezivanje za proteine
single thymine insertion binding
four-way junction DNA binding
MutLalpha complex binding
vezivanje enzima
double-stranded DNA binding
dinucleotide repeat insertion binding
ATP binding
protein kinase binding
magnesium ion binding
single guanine insertion binding
guanine/thymine mispair binding
Y-form DNA binding
heteroduplex DNA loop binding
double-strand/single-strand DNA junction binding
ATP-dependent activity, acting on DNA
chromatin binding
Ćelijska komponenta MutSbeta complex
membrana
MutSalpha complex
nukleoplazma
mismatch repair complex
jedro
hromosom
Biološki proces GO:1904089 negative regulation of neuron apoptotic process
germ cell development
male gonad development
Postreplikacijska reparacija
determination of adult lifespan
in utero embryonic development
cellular response to DNA damage stimulus
Oksidacijska fosforilacija
maintenance of DNA repeat elements
positive regulation of helicase activity
somatic recombination of immunoglobulin gene segments
intrinsic apoptotic signaling pathway in response to DNA damage
negative regulation of DNA recombination
somatic recombination of immunoglobulin genes involved in immune response
Popravak neusklađenosti DNK
B cell differentiation
B cell mediated immunity
GO:0100026 Popravka DNK
positive regulation of isotype switching to IgA isotypes
positive regulation of isotype switching to IgG isotypes
double-strand break repair
meiotic gene conversion
response to X-ray
response to UV-B
somatic hypermutation of immunoglobulin genes
mitotic intra-S DNA damage checkpoint signaling
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator
negative regulation of reciprocal meiotic recombination
Promjena imunoglobulinske klase
protein localization to chromatin
DNA recombination
Izvori:Amigo / QuickGO
Ortolozi
VrsteČovjekMiš
Entrez
Ensembl
UniProt
RefSeq (mRNK)

NM_000251
NM_001258281

NM_008628

RefSeq (bjelančevina)

NP_000242
NP_001245210

NP_032654

Lokacija (UCSC)Chr 2: 47.4 – 47.66 MbChr 17: 87.98 – 88.03 Mb
PubMed pretraga[3][4]
Wikipodaci
Pogledaj/uredi – čovjekPogledaj/uredi – miš

Protein Msh2 popravka neusklađenosti DNK , poznat i kao MutS homolog 2 ili MSH2 jest protein koji je kod ljudi kodiran genom MSH2 sa hromosoma 2.

Amiokiselininska sekvenca

Dužina polipeptidnog lanca je 934 aminokiseline, a molkekulska iežina 104.743 Da.[5]

1020304050
MAVQPKETLQLESAAEVGFVRFFQGMPEKPTTTVRLFDRGDFYTAHGEDA
LLAAREVFKTQGVIKYMGPAGAKNLQSVVLSKMNFESFVKDLLLVRQYRV
EVYKNRAGNKASKENDWYLAYKASPGNLSQFEDILFGNNDMSASIGVVGV
KMSAVDGQRQVGVGYVDSIQRKLGLCEFPDNDQFSNLEALLIQIGPKECV
LPGGETAGDMGKLRQIIQRGGILITERKKADFSTKDIYQDLNRLLKGKKG
EQMNSAVLPEMENQVAVSSLSAVIKFLELLSDDSNFGQFELTTFDFSQYM
KLDIAAVRALNLFQGSVEDTTGSQSLAALLNKCKTPQGQRLVNQWIKQPL
MDKNRIEERLNLVEAFVEDAELRQTLQEDLLRRFPDLNRLAKKFQRQAAN
LQDCYRLYQGINQLPNVIQALEKHEGKHQKLLLAVFVTPLTDLRSDFSKF
QEMIETTLDMDQVENHEFLVKPSFDPNLSELREIMNDLEKKMQSTLISAA
RDLGLDPGKQIKLDSSAQFGYYFRVTCKEEKVLRNNKNFSTVDIQKNGVK
FTNSKLTSLNEEYTKNKTEYEEAQDAIVKEIVNISSGYVEPMQTLNDVLA
QLDAVVSFAHVSNGAPVPYVRPAILEKGQGRIILKASRHACVEVQDEIAF
IPNDVYFEKDKQMFHIITGPNMGGKSTYIRQTGVIVLMAQIGCFVPCESA
EVSIVDCILARVGAGDSQLKGVSTFMAEMLETASILRSATKDSLIIIDEL
GRGTSTYDGFGLAWAISEYIATKIGAFCMFATHFHELTALANQIPTVNNL
HVTALTTEETLTMLYQVKKGVCDQSFGIHVAELANFPKHVIECAKQKALE
LEEFQYIGESQGYDIMEPAAKKCYLEREQGEKIIQEFLSKVKQMPFTEMS
EENITIKLKQLKAEVIAKNNSFVNEIISRIKVTT

Funkcija

MSH2 je gen supresije tumora i preciznije domaćinski gen koji kodira protein za popravak neusklađenosti DNK (MMR), MSH2, koji formira heterodimer sa MSH6 da napravi kompleks za popravku neusklađenosti ljudskog MutSα. Takođe se dimerizira sa MSH3, kako bi formirao kompleks za popravku MutSβ DNK. MSH2 je uključen u mnogo različitih oblika popravka DNK, uključujući transkripcijski spregnuti popravak,[6] homologme rekombinacije,[7] i popravak eksicizujom baza.[8]

Klinički značaj

Mutacije u genu MSH2 povezane su sa nestabilnošću mikrosatelita i nekim tipovima raka, posebno sa nasljednim nepolipnim kolorektumskim karcinomom (HNPCC).

Nasljedni nepolipasti kolorektalumskii karcinom, koji se ponekad naziva Lynchov sindrom, nasljeđuje se na autosomno dominantan način, gdje je nasljeđivanje samo jedne kopije mutiranog gena za popravak neusklađenosti dovoljno da izazove fenotip bolesti. Mutacije u genu MSH2 čine 40% genetićkih promjena povezanih s ovom bolešću i vodeći su uzrok, zajedno sa mutacijama MLH1.[9] Mutacije povezane sa HNPCC su široko rasprostranjene u svim domenima MSH2, a hipotetske funkcije ovih mutacija zasnovane na kristalnoj strukturi MutSα uključuju interakcije protein-protein, stabilnost, alosternu regulaciju, sučelje MSH2-MSH6 i DNK vezivanje.[10] Mutacije u MSH2 i drugim genima za popravku neusklađenosti uzrokuju da oštećenje DNK ostane nepopravljeno, što rezultira povećanjem učestalosti mutacija. Ove mutacije se nakupljaju tokom života osobe do kojih inače ne bi došlo da je DNK pravilno popravljena.

Nestabilnost mikrosatelita

Vijabilnost MMR gena uključujući MSH2 može se pratiti putem mikrosatelitne nestabilnosti, testa biomarkera koji analizira ponavljanja kratkih sekvenci koje je ćelijama vrlo teško replicirati bez funkcionalnog sistema popravke neusklađenosti. Budući da ove sekvence variraju u populaciji, stvarni broj kopija kratkih ponavljanja sekvence nije bitan, samo je konzistentan broj koji pacijent ima od tkiva do tkiva i tokom vremena. Ovaj fenomen se javlja zato što su ove sekvence sklone greškama kompleksa replikacija DNK, koje onda treba popraviti genima za popravku neusklađenosti. Ako oni ne djeluju, s vremenom će doći do duplikacija ili delecija ovih sekvenci, što će dovesti do različitog broja ponavljanja kod istog pacijenta.

Oko 71% pacijenata sa HNPCC pokazuje mikrosatelitsku nestabilnost.|[11] Metodi detekcije nestabilnosti mikrosatelita uključuju lančanu reakciju polimeraze (PCR) i imunohistohemijske (IHC) metode, provjeru lanca polimeraze DNK i imunohistohemijsko ispitivanje nivoa proteina za popravku neusklađenosti. Sada postoje dokazi da je univerzalno testiranje za MSI počevši od IHC ili PCR baziranog MSI testiranja isplativo, osjetljivo, specifično i općenito je široko prihvaćeno.[12]

Uloga u popravku neusklađenosti

Kod eukariota, od kvasaca do ljudi, MSH2 se dimerizira sa MSH6 kako bi formirao MutSα kompleks,[13] koji je uključen u popravku neusklađenosti baze i kratkih insercija/delecija petlje.[14] Heterodimerizacija MSH2 stabilizuje MSH6, koji nije stabilan zbog poremećenog N-terminalnog domena. Suprotno tome, MSH2 nema sekvencu jedarne lokalizacije (NLS), pa se vjeruje da MSH2 i MSH6 dimeriziraju u citoplazmi, a zatim se zajedno unose u ćelijsko jedro.[15] U dimeru MutSα, MSH6 stupa u interakciju sa DNK, radi prepoznavanja neusklađenosti, dok MSH2 pruža stabilnost koju MSH6 zahtijeva. MSH2 se može uvesti u jezgro bez dimerizacije u MSH6, a u ovom slučaju, MSH2 je vjerovatno dimeriziran u MSH3 da formira MutSβ.[16] MSH2 ima dva interakcijska domena sa MSH6 u heterodimeru MutSα, domen u interakciji DNK i domen ATPaze.[17]

MutSα dimer skenira dvolančanu DNK u jedru, tražeći neusklađene baze. Kada ga kompleks pronađe, popravlja mutaciju na način ovisan o ATP. MSH2 domen MutSα preferira ADP u odnosu na ATP, dok domen MSH6 preferira suprotno. Studije su pokazale da MutSα skenira samo DNK sa MSH2 domenom koja sadrži ADP, dok domen MSH6 može sadržavati ili ADP ili ATP.[18] MutSα se zatim povezuje sa MLH1 kako bi popravio oštećeni DNK.

MutSβ nastaje kada se MSH2 kompleksira sa MSH3 umjesto MSH6. Ovaj dimer popravlja duže petlje insercija/delecija od MutSα.[19] Zbog prirode mutacija koje ovaj kompleks popravlja, ovo je vjerovatno stanje MSH2 koje uzrokuje fenotip nestabilnosti mikrosatelita. Velike DNK insercije i delecije suštinski savijaju dvostruku spiralu DNK. MSH2/MSH3 dimer može prepoznati ovu topologiju i pokrenuti popravku. Mehanizam po kojem prepoznaje mutacije je također različit, jer razdvaja dva lanca DNK, što MutSα ne čini.[20]

Interakcije

Pokazalo se da MSH2 međudjeluje sa:

Epigenetički nedostaci MSH2 kod kancera

Oštećenje DNK je primarni uzrok raka,[33] a čini se da su nedostaci u ekspresiji gena za popravku DNK u osnovi mnogih oblika raka.[34][35] Ako je popravka DNK manjkava, oštećenje DNK ima tendenciju da se akumulira. Takvo prekomjerno oštećenje DNK može povećati mutacije zbog sklone greškama sinteze translezija i popravke sklone greškama. Povećano oštećenje DNK također može povećati epigenetičke promjene zbog grešaka tokom popravke DNK.[36][37] Takve mutacije i epigenetičke promjene mogu dovesti do kancera.

Smanjenje ekspresije gena za popravku DNK (obično uzrokovano epigenetičkim promjenama) vrlo je uobičajeno kod karcinoma i obično je mnogo češće od mutacijskih defekata u genima za popravku DNK kod karcinoma. U studiji o MSH2 u karcinom plućnih nemalih ćelija (NSCLC), mutacije nisu pronađene dok je 29% imalo epigenetičku redukciju ekspresije "MSH2".[38] U akutnoj limfoblastoidna leukemiji (ALL), nisu pronađene mutacije MSH2 [39] dok je 43% pacijenata sa ALL pokazalo metilaciju promotora MSH2, a njih 86% pacijenata sa relapsom imalo je metilaciju promotora MSH2.[40] Postojale su, međutim, mutacije u četiri druga gena kod ALL pacijenata koje su destabilizirale protein MSH2, a one su bile defektne kod 11% djece sa ALL i 16% odraslih s ovim karcinomom.[39]

Metilacija promotorske regije gena "MSH2" je u korelaciji sa nedostatkom ekspresije proteina MSH2 kod raka jednjaka,[41] u karcinom nemalih ćelija pluća,[38][42] i kolorektumskom kanceru.[43] Ove korelacije sugeriraju da metilacija promotorske regije gena "MSH2" smanjuje ekspresiju MSH2 proteina. Takva metilacija promotora bi smanjila popravak DNK na četiri puta u kojima učestvuje MSH2: popravak neslaganja DNK, popravak vezan uz transkripciju[6] homologna rekombinacija,[7][44][45] i popravak ekscizijom baza.[8] Takva smanjenja u popravci vjerovatno omogućavaju da se višak oštećenja DNK akumulira i doprinosi karcinogenezi.

Učestalosti metilacije promotora MSH2 u nekoliko različitih karcinoma prikazane su u tabeli.

MSH2 promotor metilacije kod sporadičnih karcinoma
Kancer Učestalost metilacije promotora MSH2 Referenca
Akutna limfoblastna leukemija 43% [40]
Povratna Akutna limfoblastna leukemija 86% [40]
Karcinom bubrežnih ćelija 51–55% [46][47]
Karcinom jednjačkih pločastih ćelija 29–48% [41][48]
Karcinom pločastih ćelija glave i vrata 27–36% [49][50][51]
Karcinom plućnih nemalih ćelia 29–34% [38][42]
Hepatoćelijski karcinom 10–29% [52]
Kolorektumski kancer 3–24% [43][53][54][55]
Sarkom mehkog tkiva 8% [56]

Također pogledajte

Reference

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000095002 - Ensembl, maj 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000024151 - Ensembl, maj 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "UniProt, P43246" (jezik: engleski). Pristupljeno 13. 11. 2021.
  6. ^ a b Mellon I, Rajpal DK, Koi M, Boland CR, Champe GN (april 1996). "Transcription-coupled repair deficiency and mutations in human mismatch repair genes". Science. 272 (5261): 557–60. Bibcode:1996Sci...272..557M. doi:10.1126/science.272.5261.557. PMID 8614807. S2CID 13084965.
  7. ^ a b de Wind N, Dekker M, Berns A, Radman M, te Riele H (juli 1995). "Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer". Cell. 82 (2): 321–30. doi:10.1016/0092-8674(95)90319-4. PMID 7628020. S2CID 7954019.
  8. ^ a b Pitsikas P, Lee D, Rainbow AJ (maj 2007). "Reduced host cell reactivation of oxidative DNA damage in human cells deficient in the mismatch repair gene hMSH2". Mutagenesis. 22 (3): 235–43. doi:10.1093/mutage/gem008. PMID 17351251.
  9. ^ Müller A, Fishel R (2002). "Mismatch repair and the hereditary non-polyposis colorectal cancer syndrome (HNPCC)". Cancer Invest. 20 (1): 102–9. doi:10.1081/cnv-120000371. PMID 11852992. S2CID 3581304.
  10. ^ Warren JJ, Pohlhaus TJ, Changela A, Iyer RR, Modrich PL, Beese LS (maj 2007). "Structure of the human MutSalpha DNA lesion recognition complex". Mol. Cell. 26 (4): 579–92. doi:10.1016/j.molcel.2007.04.018. PMID 17531815.
  11. ^ Bonis PA, Trikalinos TA, Chung M, Chew P, Ip S, DeVine DA, Lau J (maj 2007). "Hereditary nonpolyposis colorectal cancer: diagnostic strategies and their implications". Evid Rep Technol Assess (Full Rep) (150): 1–180. PMC 4781224. PMID 17764220.
  12. ^ Zhang X, Li J (februar 2013). "Era of universal testing of microsatellite instability in colorectal cancer". World J Gastrointest Oncol. 5 (2): 12–9. doi:10.4251/wjgo.v5.i2.12. PMC 3613766. PMID 23556052.
  13. ^ Hargreaves VV, Shell SS, Mazur DJ, Hess MT, Kolodner RD (mart 2010). "Interaction between the Msh2 and Msh6 nucleotide-binding sites in the Saccharomyces cerevisiae Msh2-Msh6 complex". J. Biol. Chem. 285 (12): 9301–10. doi:10.1074/jbc.M109.096388. PMC 2838348. PMID 20089866.
  14. ^ Drummond JT, Li GM, Longley MJ, Modrich P (juni 1995). "Isolation of an hMSH2-p160 heterodimer that restores DNA mismatch repair to tumor cells". Science. 268 (5219): 1909–12. Bibcode:1995Sci...268.1909D. doi:10.1126/science.7604264. PMID 7604264.
  15. ^ Christmann M, Kaina B (novembar 2000). "Nuclear translocation of mismatch repair proteins MSH2 and MSH6 as a response of cells to alkylating agents". J. Biol. Chem. 275 (46): 36256–62. doi:10.1074/jbc.M005377200. PMID 10954713.
  16. ^ Edelbrock MA, Kaliyaperumal S, Williams KJ (februar 2013). "Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities". Mutat. Res. 743–744: 53–66. doi:10.1016/j.mrfmmm.2012.12.008. PMC 3659183. PMID 23391514.
  17. ^ a b c Guerrette S, Wilson T, Gradia S, Fishel R (novembar 1998). "Interactions of human hMSH2 with hMSH3 and hMSH2 with hMSH6: examination of mutations found in hereditary nonpolyposis colorectal cancer". Mol. Cell. Biol. 18 (11): 6616–23. doi:10.1128/mcb.18.11.6616. PMC 109246. PMID 9774676.
  18. ^ Qiu R, DeRocco VC, Harris C, Sharma A, Hingorani MM, Erie DA, Weninger KR (maj 2012). "Large conformational changes in MutS during DNA scanning, mismatch recognition and repair signalling". EMBO J. 31 (11): 2528–40. doi:10.1038/emboj.2012.95. PMC 3365432. PMID 22505031.
  19. ^ Dowen JM, Putnam CD, Kolodner RD (juli 2010). "Functional studies and homology modeling of Msh2-Msh3 predict that mispair recognition involves DNA bending and strand separation". Mol. Cell. Biol. 30 (13): 3321–8. doi:10.1128/MCB.01558-09. PMC 2897569. PMID 20421420.
  20. ^ Gupta S, Gellert M, Yang W (januar 2012). "Mechanism of mismatch recognition revealed by human MutSβ bound to unpaired DNA loops". Nat. Struct. Mol. Biol. 19 (1): 72–8. doi:10.1038/nsmb.2175. PMC 3252464. PMID 22179786.
  21. ^ a b c Wang Y, Qin J (decembar 2003). "MSH2 and ATR form a signaling module and regulate two branches of the damage response to DNA methylation". Proc. Natl. Acad. Sci. U.S.A. 100 (26): 15387–92. Bibcode:2003PNAS..10015387W. doi:10.1073/pnas.2536810100. PMC 307577. PMID 14657349.
  22. ^ Wang Q, Zhang H, Guerrette S, Chen J, Mazurek A, Wilson T, Slupianek A, Skorski T, Fishel R, Greene MI (august 2001). "Adenosine nucleotide modulates the physical interaction between hMSH2 and BRCA1". Oncogene. 20 (34): 4640–9. doi:10.1038/sj.onc.1204625. PMID 11498787.
  23. ^ a b Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J (april 2000). "BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures". Genes Dev. 14 (8): 927–39. doi:10.1101/gad.14.8.927 (neaktivno 31. 10. 2021). PMC 316544. PMID 10783165.CS1 održavanje: DOI nije aktivan od 2021 (link)
  24. ^ Adamson AW, Beardsley DI, Kim WJ, Gao Y, Baskaran R, Brown KD (mart 2005). "Methylator-induced, mismatch repair-dependent G2 arrest is activated through Chk1 and Chk2". Mol. Biol. Cell. 16 (3): 1513–26. doi:10.1091/mbc.E04-02-0089. PMC 551512. PMID 15647386.
  25. ^ Brown KD, Rathi A, Kamath R, Beardsley DI, Zhan Q, Mannino JL, Baskaran R (januar 2003). "The mismatch repair system is required for S-phase checkpoint activation". Nat. Genet. 33 (1): 80–4. doi:10.1038/ng1052. PMID 12447371. S2CID 20616220.
  26. ^ Rasmussen LJ, Rasmussen M, Lee B, Rasmussen AK, Wilson DM, Nielsen FC, Bisgaard HC (juni 2000). "Identification of factors interacting with hMSH2 in the fetal liver utilizing the yeast two-hybrid system. In vivo interaction through the C-terminal domains of hEXO1 and hMSH2 and comparative expression analysis". Mutat. Res. 460 (1): 41–52. doi:10.1016/S0921-8777(00)00012-4. PMID 10856833.
  27. ^ Schmutte C, Marinescu RC, Sadoff MM, Guerrette S, Overhauser J, Fishel R (oktobar 1998). "Human exonuclease I interacts with the mismatch repair protein hMSH2". Cancer Res. 58 (20): 4537–42. PMID 9788596.
  28. ^ Schmutte C, Sadoff MM, Shim KS, Acharya S, Fishel R (august 2001). "The interaction of DNA mismatch repair proteins with human exonuclease I". J. Biol. Chem. 276 (35): 33011–8. doi:10.1074/jbc.M102670200. PMID 11427529.
  29. ^ Mac Partlin M, Homer E, Robinson H, McCormick CJ, Crouch DH, Durant ST, Matheson EC, Hall AG, Gillespie DA, Brown R (februar 2003). "Interactions of the DNA mismatch repair proteins MLH1 and MSH2 with c-MYC and MAX". Oncogene. 22 (6): 819–25. doi:10.1038/sj.onc.1206252. PMID 12584560.
  30. ^ a b Bocker T, Barusevicius A, Snowden T, Rasio D, Guerrette S, Robbins D, Schmidt C, Burczak J, Croce CM, Copeland T, Kovatich AJ, Fishel R (februar 1999). "hMSH5: a human MutS homologue that forms a novel heterodimer with hMSH4 and is expressed during spermatogenesis". Cancer Res. 59 (4): 816–22. PMID 10029069.
  31. ^ a b Acharya S, Wilson T, Gradia S, Kane MF, Guerrette S, Marsischky GT, Kolodner R, Fishel R (novembar 1996). "hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6". Proc. Natl. Acad. Sci. U.S.A. 93 (24): 13629–34. Bibcode:1996PNAS...9313629A. doi:10.1073/pnas.93.24.13629. PMC 19374. PMID 8942985.
  32. ^ Scherer SJ, Welter C, Zang KD, Dooley S (april 1996). "Specific in vitro binding of p53 to the promoter region of the human mismatch repair gene hMSH2". Biochem. Biophys. Res. Commun. 221 (3): 722–8. doi:10.1006/bbrc.1996.0663. PMID 8630028.
  33. ^ Kastan MB (april 2008). "DNA damage responses: mechanisms and roles in human disease: 2007 G.H.A. Clowes Memorial Award Lecture". Molecular Cancer Research. 6 (4): 517–24. doi:10.1158/1541-7786.MCR-08-0020. PMID 18403632.
  34. ^ Harper JW, Elledge SJ (decembar 2007). "The DNA damage response: ten years after". Molecular Cell. 28 (5): 739–45. doi:10.1016/j.molcel.2007.11.015. PMID 18082599.
  35. ^ Dietlein F, Reinhardt HC (decembar 2014). "Molecular pathways: exploiting tumor-specific molecular defects in DNA repair pathways for precision cancer therapy". Clinical Cancer Research. 20 (23): 5882–7. doi:10.1158/1078-0432.CCR-14-1165. PMID 25451105.
  36. ^ O'Hagan HM, Mohammad HP, Baylin SB (2008). "Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island". PLOS Genetics. 4 (8): e1000155. doi:10.1371/journal.pgen.1000155. PMC 2491723. PMID 18704159.
  37. ^ Cuozzo C, Porcellini A, Angrisano T, Morano A, Lee B, Di Pardo A, Messina S, Iuliano R, Fusco A, Santillo MR, Muller MT, Chiariotti L, Gottesman ME, Avvedimento EV (juli 2007). "DNA damage, homology-directed repair, and DNA methylation". PLOS Genetics. 3 (7): e110. doi:10.1371/journal.pgen.0030110. PMC 1913100. PMID 17616978.
  38. ^ a b c Wang YC, Lu YP, Tseng RC, Lin RK, Chang JW, Chen JT, Shih CM, Chen CY (2003). "Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples". J. Clin. Invest. 111 (6): 887–95. doi:10.1172/JCI15475. PMC 153761. PMID 12639995.
  39. ^ a b Diouf B, Cheng Q, Krynetskaia NF, Yang W, Cheok M, Pei D, Fan Y, Cheng C, Krynetskiy EY, Geng H, Chen S, Thierfelder WE, Mullighan CG, Downing JR, Hsieh P, Pui CH, Relling MV, Evans WE (2011). "Somatic deletions of genes regulating MSH2 protein stability cause DNA mismatch repair deficiency and drug resistance in human leukemia cells". Nat. Med. 17 (10): 1298–303. doi:10.1038/nm.2430. PMC 3192247. PMID 21946537.
  40. ^ a b c Wang CX, Wang X, Liu HB, Zhou ZH (2014). "Aberrant DNA methylation and epigenetic inactivation of hMSH2 decrease overall survival of acute lymphoblastic leukemia patients via modulating cell cycle and apoptosis". Asian Pac. J. Cancer Prev. 15 (1): 355–62. doi:10.7314/apjcp.2014.15.1.355. PMID 24528056.
  41. ^ a b Ling ZQ, Li P, Ge MH, Hu FJ, Fang XH, Dong ZM, Mao WM (2011). "Aberrant methylation of different DNA repair genes demonstrates distinct prognostic value for esophageal cancer". Dig. Dis. Sci. 56 (10): 2992–3004. doi:10.1007/s10620-011-1774-z. PMID 21674174. S2CID 22913110.
  42. ^ a b Hsu HS, Wen CK, Tang YA, Lin RK, Li WY, Hsu WH, Wang YC (2005). "Promoter hypermethylation is the predominant mechanism in hMLH1 and hMSH2 deregulation and is a poor prognostic factor in nonsmoking lung cancer". Clin. Cancer Res. 11 (15): 5410–6. doi:10.1158/1078-0432.CCR-05-0601. PMID 16061855.
  43. ^ a b Lee KH, Lee JS, Nam JH, Choi C, Lee MC, Park CS, Juhng SW, Lee JH (2011). "Promoter methylation status of hMLH1, hMSH2, and MGMT genes in colorectal cancer associated with adenoma-carcinoma sequence". Langenbecks Arch Surg. 396 (7): 1017–26. doi:10.1007/s00423-011-0812-9. PMID 21706233. S2CID 8069716.
  44. ^ Villemure JF, Abaji C, Cousineau I, Belmaaza A (2003). "MSH2-deficient human cells exhibit a defect in the accurate termination of homology-directed repair of DNA double-strand breaks". Cancer Res. 63 (12): 3334–9. PMID 12810667.
  45. ^ Elliott B, Jasin M (2001). "Repair of double-strand breaks by homologous recombination in mismatch repair-defective mammalian cells". Mol. Cell. Biol. 21 (8): 2671–82. doi:10.1128/MCB.21.8.2671-2682.2001. PMC 86898. PMID 11283247.
  46. ^ Stoehr C, Burger M, Stoehr R, Bertz S, Ruemmele P, Hofstaedter F, Denzinger S, Wieland WF, Hartmann A, Walter B (2012). "Mismatch repair proteins hMLH1 and hMSH2 are differently expressed in the three main subtypes of sporadic renal cell carcinoma" (PDF). Pathobiology. 79 (3): 162–8. doi:10.1159/000335642. PMID 22378480. S2CID 26687941.
  47. ^ Yoo KH, Won KY, Lim SJ, Park YK, Chang SG (2014). "Deficiency of MSH2 expression is associated with clear cell renal cell carcinoma". Oncol Lett. 8 (5): 2135–2139. doi:10.3892/ol.2014.2482. PMC 4186615. PMID 25295100.
  48. ^ Ling ZQ, Zhao Q, Zhou SL, Mao WM (2012). "MSH2 promoter hypermethylation in circulating tumor DNA is a valuable predictor of disease-free survival for patients with esophageal squamous cell carcinoma". Eur J Surg Oncol. 38 (4): 326–32. doi:10.1016/j.ejso.2012.01.008. PMID 22265839.
  49. ^ Sengupta S, Chakrabarti S, Roy A, Panda CK, Roychoudhury S (2007). "Inactivation of human mutL homolog 1 and mutS homolog 2 genes in head and neck squamous cell carcinoma tumors and leukoplakia samples by promoter hypermethylation and its relation with microsatellite instability phenotype". Cancer. 109 (4): 703–12. doi:10.1002/cncr.22430. PMID 17219447. S2CID 20191692.
  50. ^ Demokan S, Suoglu Y, Demir D, Gozeler M, Dalay N (2006). "Microsatellite instability and methylation of the DNA mismatch repair genes in head and neck cancer". Ann. Oncol. 17 (6): 995–9. doi:10.1093/annonc/mdl048. PMID 16569647.
  51. ^ Czerninski R, Krichevsky S, Ashhab Y, Gazit D, Patel V, Ben-Yehuda D (2009). "Promoter hypermethylation of mismatch repair genes, hMLH1 and hMSH2 in oral squamous cell carcinoma". Oral Dis. 15 (3): 206–13. doi:10.1111/j.1601-0825.2008.01510.x. PMID 19207881.
  52. ^ Hinrichsen I, Kemp M, Peveling-Oberhag J, Passmann S, Plotz G, Zeuzem S, Brieger A (2014). "Promoter methylation of MLH1, PMS2, MSH2 and p16 is a phenomenon of advanced-stage HCCs". PLOS ONE. 9 (1): e84453. Bibcode:2014PLoSO...984453H. doi:10.1371/journal.pone.0084453. PMC 3882222. PMID 24400091.
  53. ^ Vlaykova T, Mitkova A, Stancheva G, Kadiyska T, Gulubova M, Yovchev Y, Cirovski G, Chilingirov P, Damyanov D, Kremensky I, Mitev V, Kaneva R (2011). "Microsatellite instability and promoter hypermethylation of MLH1 and MSH2 in patients with sporadic colorectal cancer". J BUON. 16 (2): 265–73. PMID 21766496.
  54. ^ Malhotra P, Anwar M, Kochhar R, Ahmad S, Vaiphei K, Mahmood S (2014). "Promoter methylation and immunohistochemical expression of hMLH1 and hMSH2 in sporadic colorectal cancer: a study from India". Tumour Biol. 35 (4): 3679–87. doi:10.1007/s13277-013-1487-3. PMID 24317816. S2CID 10615946.
  55. ^ Onrat S, Ceken I, Ellidokuz E, Kupelioğlu A (2011). "Alterations of copy number of methylation pattern in mismatch repair genes by methylation specific-multiplex ligation-dependent probe amplification in cases of colon cancer". Balkan J. Med. Genet. 14 (2): 25–34. doi:10.2478/v10034-011-0044-x. PMC 3776700. PMID 24052709.
  56. ^ Kawaguchi K, Oda Y, Saito T, Yamamoto H, Takahira T, Kobayashi C, Tamiya S, Tateishi N, Iwamoto Y, Tsuneyoshi M (2006). "DNA hypermethylation status of multiple genes in soft tissue sarcomas". Mod. Pathol. 19 (1): 106–14. doi:10.1038/modpathol.3800502. PMID 16258501.

Dopunska literatura

Vanjski linkovi