hormoni: dijabetes (vidi dolje) i hipogonadizam (insuficijencija žlijezda koje proizvode spolni hormon) što dovodi do niskog spolnog nagona i / ili gubitka plodnosti kod muškaraca i gubitka menstruacijskog ciklusa kod žena.[3]
metabolizam: dijabetes kod ljudi sa preopterećenjem gvožđem nastaje kao posljedica selektivnog taloženja gvožđa u beta ćelijama ostrvcadi u pankreasu, što dovodi do funkcionalnog otkaza i ćelijske smrti.[4]
koža: melanoderma (potamnjivanje ili bronziranje kože).[5][6]
Duboka preplanula boja kože, zajedno sa insuficijencijom insulina uslijed oštećenja gušterače, izvor je nadimka za ovo stanje: "bronzani dijabetes" (za više informacija pogledajte historija hemohromatoze) .
Uzroci
Termin „hemohromatoza“ u početku se koristio da označi ono što se sada preciznije naziva hemohromatoza tip 1 (ili HFE-vezana nasljedna hemohromatoza). Sada se hemokromatoza (bez daljnje specifikacije) uglavnom definira kao preopterećenje gvožđem sa nasljednim ili primarnim uzrokom,[7][8] ili potiče od metabolitskog poremećaja.[9] Međutim, termin se sada koristi i šire kako bi se odnosio na bilo koji oblik preopterećenja gvožđem, što zahtijeva preciziranje uzroka, naprimjer, "nasljedna hemohromatoza". Nasljedna hemohromatoza je autosomno recesivni poremećaj s procijenjenom prevalencijom u populaciji od 1 do 200 među pacijentima evropskog porijekla, a s nižom učestalošću u ostalim etničkim skupinama.[10] Gen odgovoran za nasljednu hemohromatozu (poznat kao HFE gen) nalazi se na hromosomu 6; većina nasljednih bolesnika s hemohromatozom ima mutacije u ovom HFE genu.
Nasljednu hemohromatozu karakterizira ubrzana stopa apsorpcije gvožđa u crijevima i progresivno taloženje u različitim tkivima. To se obično počinje ispoljavati u trećoj do petoj deceniji života, ali se može javiti i kod djece. Najčešća prezentacija je (ciroza jetre u kombinaciji sa hipopituitarizmom, kardiomiopatijama, dijabetesom, artritisom ili hiperpigmentacijama. Zbog teških posljedica ovog poremećaja ako se ne liječi i prepoznajući da je liječenje relativno jednostavno, važna je rana dijagnoza prije pojave simptoma ili znakova.[11][12]
Općenito, pojam hemosideroza koristi se za ukazivanje na patološki učinak nakupljanja gvožđa u bilo kojem od organa, koji se uglavnom javlja u obliku kompleksa za skladištenje gvožđa, hemosiderinu.[13][14] Ponekad se umjesto toga koristi jednostavniji izraz sideroza.
Ostale definicije koje razlikuju hemohromatozu ili hemosiderozu koje se povremeno koriste uključuju:
Hemosideroza je hemohromatoza uzrokovana pretjeranom transfuzijom krvi, odnosno hemosideroza je oblik sekundarne hemohromatoze.[15][16]
Hemosideroza je taloženje hemosiderina u ćelijama, dok je hemohromatoza hemosiderin unutar ćelija i intersticija.[17]
Hemosideroza je preopterećenje gvožđem koje ne uzrokuje oštećenje tkiva,[18] dok hemohromatoza to čini.[19]
Hemosideroza se proizvoljno razlikuje od hemohromatoze reverzibilnom prirodom nakupljanja gvožđa u retikuloendotelnom sistemu.[20]
Uzroci hemohromatoze podijeljeni su u dvije potkategorije: „primarni slučajevi“ (nasljedni ili genetički uvjetovani) i rjeđi „sekundarni slučajevi“ (stečeni tokom života).[21]Kelti (Irci, Škoti, Velšani, Kornši, Bretonci itd.), engleskog i skandinavskog porijekla [22] imaju posebno visoku incidenciju, s oko 10% nositelja glavne genetičke varijante, mutacije C282Y na HFE genu, a 1% ima ovo stanje.[23] To je prepoznato u nekoliko alternativnih laičkih imena kao što su "keltska kletva", "irska bolest", "britanski gen" i "škotska bolest".
Ogromna većina ovisi o mutacijama HFE, otkrivenim 1996. godine, ali od tada su otkrivene i druge koje su ponekad grupirane kao one za "neklasičnu nasljednu hemohromatozu",[24] "nasljedna hemohromatoza koja nije povezana s HFE-om",[25] ili "ne-HFE haemohromatoza".[26]
Dostupno je nekoliko metoda za dijagnosticiranje i praćenje opterećenja željezom.
Test krvi
Krvni testovi su obično prvi test ako postoji klinička sumnja na preopterećenje željezom. Testiranje feritina u serumu jeftin je, lahko dostupan i minimalno invazivan metoda za procjenu zaliha gvožđa u tijelu. Međutim, glavni problem s upotrebom kao pokazatelja preopterećenja je taj što može biti povišen u raznim drugim medicinskim stanjima, uključujući infekcije, upale, groznicu, bolesti jetre, bolesti bubrega i rak. Takođe, ukupni kapacitet vezivanja gvožđa može biti nizak, ali može biti i normalan.[28] U muškaraca i postmenopauzi žena, normalni raspon serumskog feritina je između 12 i 300 ng/ml (670 pmol/L).[29][30][31] U premenopauzi, normalni raspon serumskog feritina je između 12 i 150[29] ili 200[30] ng/mL (330 ili 440 pmol/L).[31] Ako osoba ima simptome, možda će joj trebati testiranje više puta tiokom života, kao mjera predostrožnosti, najčešće kod žena nakon menopauze. Zasićenost transferinom je specifičniji test.
Genetika
DNK /skrining: sadašni standard prakse u dijagnostici hemohromatoze, stavlja naglasak na genetičko testiranje.[11] Pozitivna HFE analiza potvrđuje kliničku dijagnozu hemohromatoze kod asimptomatskih osoba s testovima krvi koji pokazuju povećane zalihe gvožđa ili za prediktivna ispitivanja osoba s porodičnom anamnezom hemohromatoze. Aleli koji su evaluirani analizom gena HFE evidentni su kod ~80% pacijenata sa hemohromatozom; negativan izvještaj za HFE gen ne isključuje hemohromatozu. Rođake prvog stepena osoba s primarnom hemohromatozom treba pregledati kako bi se utvrdilo jesu li nositelji bolesti ili mogu razviti bolest. To može omogućiti preduzimanje preventivnih mjera. Ne preporučuje se screening opće populacije.[32]
Biopsija
Biopsija jetre je uklanjanje malog uzorka kako bi se proučio i može utvrditi uzrok upale ili ciroze. Kod nekoga s negativnim testiranjem HFE gena, povišenim statusom gvožđa, bez drugog očiglednog razloga i porodičnom anamnezom bolesti jetre, naznačena je dodatna procjena koncentracije gvožđa u jetri. U ovom slučaju, dijagnoza hemohromatoze temelji se na biohemijskoj analizi i histološkom pregledu biopsije jetre. Procjena indeksa jetrenog gvožđa (HII) smatra se „zlatnim standardom“ za dijagnozu hemohromatoze.
Snimanje magnetnom rezonancom (MRI) koristi se kao neinvazivan način precizne procjene nivoa taloženja gvožđa u jetri, kao i u srcu, zglobovima i hipofizi.
Liječenje
Flebotomija
Flebotomija / venesekcija: rutinsko liječenje sastoji se od redovno predviđenih flebotomija (puštanje krvi ili eritrocitafereza). Kada se prvi put dijagnosticira, flebotomije se mogu izvoditi svake sedmice ili svake dvije, sve dok se nivo gvožđa ne postigne u granicama normale. Kada se zasićenje feritina i transferina u serumu unutar normalnih granica, liječenje se može zakazati svaka dva do tri mjeseca, ovisno o brzini reapsorpcije gvožđa. Uzorak flebotomije obično uzima između 450 i 500 ml krvi.[33] Izvađena krv se ponekad donira.[34]
Dijeta
Općenito se preporučuje dijeta s malo gvožđa, ali ima mali učinak u usporedbi s venesekcijom. Ljudska prehrana sadrži gvožđe u dva oblika: hem i ne-hem gvožđe. Hemsko gvožđe je oblik gvožđa koji se najlakše apsorbira. Osobama s preopterećenjem željezom može se savjetovati da izbjegavaju hranu koja sadrži puno hem-gvožđa. Najviše ga ima crveno meso poput govedine, divljači, janjetine, bivolskog mesa i ribe poput plavoperajne tune. Stroga dijeta sa malo gvožđa obično nije potrebna. Ne-hem gvožđe se ne apsorbira tako lahko u ljudskom sistemuj i nalazi se u biljnoj hrani poput žitarica, graha, povrća, voća, orašastih plodova i sjemenki.[35]
Lijekovi
Lijekovi: Za one koji ne podnose rutinsko vađenje krvi, na raspolaganju su helatna sredstva.[36] Lijek deferoxamine veže se za gvožđe u krvotoku i pojačava njegovo uklanjanje u urinu i izmetu. Tipski tretman hroničnog preopterećenja gvožđem zahtijeva potkožno ubrizgavanje u periodu od 8–12 sati dnevno. Dva novija lijeka koji heliraju gvožđe koji imaju dozvolu za upotrebu kod pacijenata koji redovito primaju transfuzije krvi za liječenje talasemije (i koji, zbog toga, razviju preopterećenje željezom) su deferasirox i deferiprone.[37][38]
Helirajući polimeri
Minimalno invazivan pristup lečenju nasljedne hemohromatoze je terapija održavanja sa polimernim helatorima.[39][40][41] Ovi polimeri ili čestice imaju zanemarivu ili nultu sistemsku biološku dostupnost i dizajnirani su da tvore stabilne komplekse sa Fe2+ i Fe3+ đ u GIT i na taj način ograničavaju njihov unos i dugotrajnu akumulaciju. Iako ovaj metod ima samo ograničenu efikasnost, za razliku od malomolekulskih helatora, pristup praktično nema neželjenih efekata u subhroničnim studijama. Fe2+ i Fe3+ povećavaju efikasnost liječenja.[41]
Prognoza
Općenito, pod uvjetom da nije došlo do oštećenja jetre, pacijenti bi trebali očekivati normalan životni vijek ako se adekvatno liječe venesekcijom. Ako je feritin u serumu veći od 1000 ug / L pri dijagnozi, postoji rizik od oštećenja jetre i ciroze što im na kraju može skratiti život.[42] Prisustvo ciroze povećava rizik od hepatoćelijskog karcinoma.[43]
Epidemiologija
HHC je najčešći u određenim evropskim populacijama (poput onih irskog ili skandinavskog porijekla) i javlja se u 0,6% neke neodređene populacije. Muškarci imaju 24 puta veću stopu preopterećenja gvožđem u poređenju sa ženama.[32]
Kameno doba
Smatra se da su prehrana i okolina imali veliki uticaj na mutaciju gena povezanih s preopterećenjem željezom. Počevši od mezolitske ere, zajednice ljudi živjele su u okruženju koje je bilo prilično sunčano, toplo i imalo suhu klimu Bliskog Istoka. Većina ljudi koji su u to vrijeme živjeli bili su stočari i njihova prehrana sastojala se uglavnom od divljači, ribe i divljih biljaka. Arheolozi koji su proučavali zubne naslage pronašli su dokaze o gomoljima, orašastim plodovima, trpucu, travama i drugoj hrani bogatoj gvožđem. Tokom mnogih generacija, ljudsko tijelo postalo je dobro prilagođeno visokom sadržaju gvožđa u prehrani.[44]
Neolit
Smatra se da su se u neolitskoj eri dogodile značajne promjene u okolišu i prehrani. Neke zajednice stočara su migrirale prema sjeveru, što je dovelo do promjena u načinu života i okolini, sa smanjenjem temperatura i promjenom krajolika kojem su se tada trebali prilagoditi. Kako su ljudi počeli razvijati i unapređivati svoje alate, naučili su nove načine proizvodnje hrane i poljoprivreda se takođe polahko razvijala. Te bi promjene dovele do ozbiljnog stresa u tijelu i smanjenja konzumacije hrane bogate gvožđem. Ovaj prijelaz je ključni faktor u mutaciji gena, posebno onih koji su regulirali apsorpciju gvožđa iz hrane. Gvožđe, koje čini 70% sastava crvenih krvnih zrnaca, presudno je mikrohranjivo za efikasnu termoregulaciju u tijelu.[45] Nedostatak gvožđa će dovesti do pada temperature tjelesnog jezgra. U prohladnom i vlažnom okruženju sjeverne Evrope, bilo je neophodno dodatno gvožđe iz hrane kako bi se održavale regulirane temperature, ali, bez dovoljnog unosa gvožđa ljudsko tijelo bi ga počelo skladištiti većim brzinama od uobičajenih. U teoriji, pritisci uzrokovani migracijom na sjever selekcionirali bi mutaciju gena koja je promovirala veću apsorpciju i skladištenje gvožđa.[46]
Vikinška hipoteza
Studije i istraživanja provedena kako bi se utvrdila učestalost hemohromatoze pomažu u objašnjenju kako je mutacija migrirala širom svijeta. U teoriji, bolest je u početku evoluirala od putnika koji su migrirali sa sjevera. Istraživanja pokazuju poseban obrazac distribucije sa velikim klasterima i frekvencijama genskih mutacija duž zapadne evropske obale.[47] To je dovelo do razvoja hipoteze "Viking".[48] Lokacije klastera i mapirani obrasci ove mutacije usko su u korelaciji s lokacijama Vikinških naselja u Evropi, uspostavljenih od 700. do 1.100 godine n. e. Vikinzi su izvorno dolazili iz Norveške, Švedske i Danske. Vikinški brodovi probili su se duž obale Evrope u potrazi za trgovinom, bogatstvom i zemljom. Genetićke studije sugeriraju da su uzorci izuzetno visokih frekvencija u nekim evropskim zemljama posljedica migracija Vikinga i kasnije Normana, što ukazuje na genetičku vezu između nasljedne hemohromatoze i vikinškog porijekla.[49]
Moderna vremena
U 1865., Armand Trousseau (francuski internista) bio je jedan od prvih koji je opisao mnoge simptome dijabetičara s cirozom jetre i bronzanom bojom kože. Termin hemohromatoza prvi je put upotrijebio njemački patolog Friedrich Daniel von Recklinghausen 1889. godine, kada je opisao nakupljanje gvožđa u tjelesnim tkivima.[50]
Identifikacija genetičkih faktora
Iako je većinom 20. stoljeća bilo poznato da je glavnina slučajeva hemohromatoze naslijeđena, pogrešno se pretpostavljalo da ovise o jednom genu.[51]
U 1935., J. H. Sheldon, britanski ljekar, prvi je put opisao vezu s metabolizmom gvožđa, demonstrirajući i njegovu nasljednu prirodu.[50]
U 1996., Felder et al. identificirali su gen za hemohromatozu, gen HFE. Felder je otkrio da gen HFE ima dvije glavne mutacije, C282Y i H63D, koje su bile glavni uzrok nasljedne hemohromatoze.[52][53] Sljedeće godine, CDC i Nacionalni institut za istraživanje ljudskog genoma sponzorirali su ispitivanje hemohromatoze nakon otkrića gena HFE, što je pomoglo da se izvrše skrininzi populacije i procjene koje se i danas koriste.[54]
^Hider, Robert C.; Kong, Xiaole (2013). "Chapter 8. Iron: Effect of Overload and Deficiency". u Astrid Sigel, Helmut Sigel and Roland K. O. Sigel (ured.). Interrelations between Essential Metal Ions and Human Diseases. Metal Ions in Life Sciences. 13. Springer. str. 229–294. doi:10.1007/978-94-007-7500-8_8. ISBN978-94-007-7499-5. PMID24470094.
^"Welcome". Hemochromatosis.org - An Education Website for Hemochromatosis and Too Much Iron. Arhivirano s originala, 11. 4. 2018. Pristupljeno 11. 4. 2018.
^Miller, Marvin J. (1. 11. 1989). "Syntheses and therapeutic potential of hydroxamic acid based siderophores and analogs". Chemical Reviews. 89 (7): 1563–1579. doi:10.1021/cr00097a011.
^Polomoscanik, Steven C.; Cannon, C. Pat; Neenan, Thomas X.; Holmes-Farley, S. Randall; Mandeville, W. Harry; Dhal, Pradeep K. (2005). "Hydroxamic Acid-Containing Hydrogels for Nonabsorbed Iron Chelation Therapy: Synthesis, Characterization, and Biological Evaluation". Biomacromolecules. 6 (6): 2946–2953. doi:10.1021/bm050036p. ISSN1525-7797. PMID16283713.
^Qian, Jian; Sullivan, Bradley P.; Peterson, Samuel J.; Berkland, Cory (2017). "Nonabsorbable Iron Binding Polymers Prevent Dietary Iron Absorption for the Treatment of Iron Overload". ACS Macro Letters. 6 (4): 350–353. doi:10.1021/acsmacrolett.6b00945. ISSN2161-1653.
^Rosenzweig, P. H.; Volpe, S. L. (mart 1999). "Iron, thermoregulation, and metabolic rate". Critical Reviews in Food Science and Nutrition. 39 (2): 131–148. doi:10.1080/10408399908500491. ISSN1040-8398. PMID10198751.