Titanium disulfide

Titanium disulfide
Names
IUPAC name
Titanium(IV) sulfide
Other names
Titanium Sulfide, titanium sulphide, titanium disulfide, titanium disulphide
Identifiers
3D model (JSmol)
ECHA InfoCard 100.031.699 Edit this at Wikidata
EC Number
  • 232-223-6
  • InChI=1S/2S.Ti
  • S=[Ti]=S
Properties
TiS2
Molar mass 111.997 g/mol
Appearance yellow powder
Density 3.22 g/cm3, solid
insoluble
Structure
hexagonal, space group P3m1, No. 164
octahedral
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Titanium disulfide is an inorganic compound with the formula TiS2. A golden yellow solid with high electrical conductivity,[1] it belongs to a group of compounds called transition metal dichalcogenides, which consist of the stoichiometry ME2. TiS2 has been employed as a cathode material in rechargeable batteries.

Structure

With a layered structure, TiS2 adopts a hexagonal close packed (hcp) structure, analogous to cadmium iodide (CdI2). In this motif, half of the octahedral holes are filled with a "cation", in this case Ti4+.[1][2] Each Ti centre is surrounded by six sulfide ligands in an octahedral structure. Each sulfide is connected to three Ti centres, the geometry at S being pyramidal. Several metal dichalcogenides adopt similar structures, but some, notably MoS2, do not.[2] The layers of TiS2 consist of covalent Ti-S bonds. The individual layers of TiS2 are bound together by van der Waals forces, which are relatively weak intermolecular forces. It crystallises in the space group P3m1.[3] The Ti-S bond lengths are 2.423 Å.[4]

Cartoon for intercalation of Li into TiS2 cathode. The process involves swelling of one crystal axis and charge transfer from Li to Ti.

Intercalation

The single most useful and most studied property of TiS2 is its ability to undergo intercalation upon treatment with electropositive elements. The process is a redox reaction, illustrated in the case of lithium:

TiS2 + Li → LiTiS2

LiTiS2 is generally described as Li+[TiS2]. During the intercalation and deintercalation, a range of stoichimetries are produced with the general formul LixTiS2 (x < 1). During intercalation, the interlayer spacing expands (the lattice "swells") and the electrical conductivity of the material increases. Intercalation is facilitated because of the weakness of the interlayer forces as well as the susceptibility of the Ti(IV) centers toward reduction. Intercalation can be conducted by combining a suspension of the disulfide material and a solution of the alkali metal in anhydrous ammonia. Alternatively solid TiS2 reacts with the alkali metal upon heating.

The Rigid-Band Model (RBM), which assumes that electronic band structure does not change with intercalation, describes changes in the electronic properties upon intercalation.

Deintercalation is the opposite of intercalation; the cations diffuse out from between the layers. This process is associated with recharging a Li/TiS2 battery. Intercalation and deintercalation can be monitored by cyclic voltammetry. The microstructure of the titanium disulfide greatly affects the intercalation and deintercalation kinetics. Titanium disulfide nanotubes have a higher uptake and discharge capacity than the polycrystalline structure.[5] The higher surface area of the nanotubes is postulated to provide more binding sites for the anode ions than the polycrystalline structure.[5]

Material properties

Formally containing the d0 ion Ti4+ and closed shell dianion S2−, TiS2 is essentially diamagnetic. Its magnetic susceptibility is 9 x 10−6 emu/mol, the value being sensitive to stoichiometry.[6] Titanium disulfide is a semimetal, meaning there is small overlap of the conduction band and valence band.

High pressure properties

The properties of titanium disulfide powder have been studied by high pressure synchrotron x-ray diffraction (XRD) at room temperature.[3] At ambient pressure, TiS2 behaves as semiconductor while at high pressures of 8 GPa the material behaves as a semimetal.[3][7] At 15 GPa, the transport properties change.[7] There is no significant change in the density of states at the Fermi level up to 20 GPa and phase change does not occur until 20.7 GPa. A change in the structure of TiS2 was observed at a pressure of 26.3 GPa, although the new structure of the high pressure phase has not been determined.[3]

The unit cell of titanium disulfide is 3.407 by 5.695 angstroms. The size of the unit cell decreased at 17.8 GPa. The decrease in unit cell size was greater than was observed for MoS2 and WS2, indicating that titanium disulfide is softer and more compressible. The compression behavior of titanium disulfide is anisotropic. The axis parallel to S-Ti-S layers (c-axis) is more compressible than the axis perpendicular to S-Ti-S layers (a-axis) because of weak van der waals forces keeping S and Ti atoms together. At 17.8 GPa, the c-axis is compressed by 9.5% and the a-axis is compressed by 4%. The longitudinal sound velocity is 5284 m/s in the plane parallel to S-Ti-S layers. The longitudinal sound velocity perpendicular to the layers is 4383 m/s.[8]

Synthesis

Titanium disulfide is prepared by the reaction of the elements around 500 °C.[6]

Ti + 2 S → TiS2

It can be more easily synthesized from titanium tetrachloride, but this product is typically less pure than that obtained from the elements.[6]

TiCl4 + 2 H2S → TiS2 + 4 HCl

This route has been applied to the formation of TiS2 films by chemical vapor deposition. Thiols and organic disulfides can be employed in place of hydrogen sulfide.[9]

A variety of other titanium sulfides are known.[10]

Chemical properties of TiS2

Samples of TiS2 are unstable in air.[6] Upon heating, the solid undergoes oxidation to titanium dioxide:

TiS2 + O2 → TiO2 + 2 S

TiS2 is also sensitive to water:

TiS2 + 2H2O → TiO2 + 2 H2S

Upon heating, TiS2 releases sulfur, forming the titanium(III) derivative:

2 TiS2 → Ti2S3 + S

Sol-gel synthesis

Thin films of TiS2 have been prepared by the sol-gel process from titanium isopropoxide (Ti(OPri)4) followed by spin coating.[11] This method affords amorphous material that crystallised at high temperatures to hexagonal TiS2, which crystallization orientations in the [001], [100], and [001] directions.[11] Because of their high surface area, such films are attractive for battery applications.[11]

Unusual morphologoes of TiS2

More specialized morphologies—nanotubes, nanoclusters, whiskers, nanodisks, thin films, fullerenes—are prepared by combining the standard reagents, often TiCl4 in unusual ways. For example, flower-like morphologies were obtain by treating a solution of sulfur in 1-octadecene with titanium tetrachloride.[12]

Fullerene-like materials

A form of TiS2 with a fullerene-like structure has been prepared using the TiCl4/H2S method. The resulting spherical structures have diameters between 30 and 80 nm.[13] Owing to their spherical shape, these fullerenes exhibit reduced friction coefficient and wear, which may prove useful in various applications.

Nanotubes

Nanotubes of TiS2 can be synthesized using a variation of the TiCl4/H2S route. According to transmission electron microscopy (TEM), these tubes have an outer diameter of 20 nm and an inner diameter of 10 nm.[14] The average length of the nanotubes was 2-5 μm and the nanotubes were proven to be hollow.[14] TiS2 nanotubes with open ended tips are reported to store up to 2.5 weight percent hydrogen at 25 °C and 4 MPa hydrogen gas pressure.[15] Absorption and desorption rates are fast, which is an attractive for hydrogen storage. The hydrogen atoms are postulated to bind to sulfur.[15]

Nanoclusters and nanodisks

Nanoclusters, or quantum dots of TiS2 have distinctive electronic and chemical properties due to quantum confinement and very large surface to volume ratios. Nanoclusters can be synthesized using micelle. The nanoclusters are prepared from a solution of TiCl4 in tridodecylmethyl ammonium iodide (TDAI), which served as the inverse micelle structure and seeded the growth of nanoclusters in the same general reaction as nanotubes.[14] Nucleation only occurs inside the micelle cage due to the insolubility of the charged species in the continuous medium, which is generally a low dielectric constant inert oil. Like the bulk material, nanocluster-form of TiS2 is a hexagonal layered structure. . Quantum confinement creates well separated electronic states and increases the band gap more than 1 eV in comparison to the bulk material. A spectroscopic comparison shows a large blueshift for the quantum dots of 0.85 eV.

Nanodisks of TiS2 arise by treating TiCl4 with sulfur in oleylamine.[16]

Applications

A battery is shown using titanium disulfide as a cathode. Lithium ions intercalate and deintercalate the layered titanium disulfide cathode as the battery is charged and discharged.

The promise of titanium disulfide as a cathode material in rechargeable batteries was described in 1973 by M. Stanley Whittingham.[17] The Group IV and V dichalcogenides attracted attention for their high electrical conductivities. The originally described battery used a lithium anode and a titanium disulfide cathode. This battery had high energy density and the diffusion of lithium ions into the titanium disulfide cathode was reversible, making the battery rechargeable. Titanium disulfide was chosen because it is the lightest and cheapest chalcogenide. Titanium disulfide also has the fastest rate of lithium ion diffusion into the crystal lattice. The main problem was degradation of the cathode after multiple recycles. This reversible intercalation process allows the battery to be rechargeable. Additionally, titanium disulfide is the lightest and the cheapest of all group IV and V layered dichalcogenides.[18] In the 1990s, titanium disulfide was replaced by other cathode materials (manganese and cobalt oxides) in most rechargeable batteries.

The use of TiS2 cathodes remains of interest for use in solid-state lithium batteries, e.g., for hybrid electric vehicles and plug-in electric vehicles.[18]

In contrast to the all-solid state batteries, most lithium batteries employ liquid electrolytes, which pose safety issues due to their flammability. Many different solid electrolytes have been proposed to replace these hazardous liquid electrolytes. For most solid-state batteries, high interfacial resistance lowers the reversibility of the intercalation process, shortening the life cycle. These undesirable interfacial effects are less problematic for TiS2. One all-solid-state lithium battery exhibited a power density of 1000 W/kg over 50 cycles with a maximum power density of 1500 W/kg. Additionally, the average capacity of the battery decreased by less than 10% over 50 cycles. Although titanium disulfide has high electrical conductivity, high energy density, and high power, its discharge voltage is relatively low compared to other lithium batteries where the cathodes have higher reduction potentials.[18]

Notes

  1. ^ a b Smart, Lesley E.; Moore, Elaine A. (2005). Solid State Chemistry: An Introduction, Third Edition. Boca Raton, FL: Taylor & Francis.
  2. ^ a b Overton, Peter; Rourke, Tina; Weller, Jonathan; Armstrong, Mark; Atkins, Fraser (2010). Shriver and Atkins' Inorganic Chemistry 5th Edition. Oxford, England: Oxford University Press.
  3. ^ a b c d Aksoy, Resul; Selvi, Emre; Knudson, Russell; Ma, Yanzhang (2009). "A high pressure x-ray diffraction study of titanium disulfide". Journal of Physics: Condensed Matter. 21 (2): 025403. Bibcode:2009JPCM...21b5403A. doi:10.1088/0953-8984/21/2/025403. PMID 21813976. S2CID 22810398.
  4. ^ Chianelli, R.R.; Scanlon, J.C.; Thompson, A.H. (1975). "Structure refinement of stoichiometric TiS2". Materials Research Bulletin. 10 (12): 1379–1382. doi:10.1016/0025-5408(75)90100-2.
  5. ^ a b Tao, Zhan-Liang; Xu, Li-Na; Gou, Xing-Long; Chen, Jun; Yuana, Hua-Tang (2004). "TiS2 nanotubes as the cathode materials of Mg-ion batteries". Chem. Commun. (18): 2080–2081. doi:10.1039/b403855j. PMID 15367984.
  6. ^ a b c d McKelvy, M. J.; Glaunsinger, W. S. (1995). "Titanium Disulfide". Inorganic Syntheses. Vol. 30. pp. 28–32. doi:10.1002/9780470132616.ch7. ISBN 978-0-471-30508-8.
  7. ^ a b Bao, L.; Yang, J.; Han, Y.H.; Hu, T.J.; Ren, W.B.; Liu, C.L.; Ma, Y.Z.; Gao, C.X. (2011). "Electronic Structure of TiS(2) and its electric transport properties under high pressure". J. Appl. Phys. 109 (5): 053717–053717–5. Bibcode:2011JAP...109e3717L. doi:10.1063/1.3552299.
  8. ^ Wan,CL; Wang,YF; Wang,N; Norimatsu,W; Kusunoki,M; Koumoto,K (2011). "Intercalation: Building a Natural Superlattice for Better Thermoelectric Performance in Layered Chalcogenides". Journal of Electronic Materials. 40 (5): 1271–1280. Bibcode:2011JEMat..40.1271W. doi:10.1007/s11664-011-1565-5. S2CID 97106786.
  9. ^ Lewkebandara, T. Suren; Winter, Charles H. (1994). "CVD routes to titanium disulfide films". Advanced Materials. 6 (3): 237–9. Bibcode:1994AdM.....6..237L. doi:10.1002/adma.19940060313.
  10. ^ Murray, J. L. (1986). "The S−Ti (Sulfur-Titanium) system". Bulletin of Alloy Phase Diagrams. 7 (2): 156–163. doi:10.1007/BF02881555.
  11. ^ a b c Let, AL; Mainwaring, DE; Rix, C; Murugaraj, P (2008). "Thio sol-gel synthesis of titanium disulfide thin films and powders using titanium alkoxide precursors". Journal of Non-Crystalline Solids. 354 (15–16): 1801–1807. Bibcode:2008JNCS..354.1801L. doi:10.1016/j.jnoncrysol.2007.09.005.
  12. ^ Prabakar, S.; Bumby, C.W.; Tilley, R.D. (2009). "Liquid-Phase Synthesis of Flower-like and Flake-like Titanium Disulfide Nanostructures". Chemistry of Materials. 21 (8): 1725–1730. doi:10.1021/cm900110h.
  13. ^ Margolin, A.; Popovitz-Biro, R.; Albu-Yaron, A.; Rapoport, L.; Tenne, R. (2005). "Inorganic fullerene-like nanoparticles of TiS2". Chemical Physics Letters. 411 (1–3): 162–166. Bibcode:2005CPL...411..162M. doi:10.1016/j.cplett.2005.05.094.
  14. ^ a b c Chen, Jun; Li, Suo-Long; Tao, Zhan-Liang; Gao, Feng (2003). "Low-temperature synthesis of titanium disulfide nanotubes". Chem. Commun. (8): 980–981. doi:10.1039/b300054k. PMID 12744329.
  15. ^ a b Chen, J; Li, SL; et al. (2003). "Titanium disulfide nanotubes as hydrogen storage materials". Journal of the American Chemical Society. 125 (18): 5284–5285. doi:10.1021/ja034601c. PMID 12720434.
  16. ^ Park, K.H.; Choi, J.; Kim, H.J.; Oh, D.H.; Ahn, J.R.; Son, S. (2008). "Unstable single-layered colloidal TiS2 nanodisks". Small. 4 (7): 945–950. doi:10.1002/smll.200700804. PMID 18576280.
  17. ^ Whittingham, M. Stanley (2004). "Lithium Batteries and Cathode Materials". Chem. Rev. 104 (10): 4271–4302. doi:10.1021/cr020731c. PMID 15669156. S2CID 888879.
  18. ^ a b c Trevey, J; Stoldt, C; Lee, S-H (2011). "High Power Nanocomposite TiS2 Cathodes for All-Solid-State Lithium Batteries". Journal of the Electrochemical Society. 158 (12): A1282–A1289. doi:10.1149/2.017112jes.
Hexagonal close packed structure of titanium disulfide where blue spheres represent titanium cations and clear spheres represent sulfide anions.

Further reading

Read other articles:

Erik Friberg Friberg bermain untuk Seattle Sounders pada 2011Informasi pribadiNama lengkap John Erik Gunnar FribergTanggal lahir 10 Februari 1986 (umur 38)Tempat lahir Lindome, SwediaTinggi 1,80 m (5 ft 11 in)Posisi bermain GelandangInformasi klubKlub saat ini Esbjerg fBNomor 18Karier junior2003–2004 Västra Frölunda IFKarier senior*Tahun Tim Tampil (Gol)2005–2006 Västra Frölunda IF 32 (3)2007–2010 BK Häcken 94 (5)2011 Seattle Sounders FC 26 (1)2012–2013 Malm�...

 

PT BerdikariSebelumnyaPT Perusahaan Pilot Proyek BerdikariJenisPerseroan terbatasIndustriPeternakanDidirikan15 Agustus 1966; 57 tahun lalu (1966-08-15)KantorpusatJakarta, IndonesiaWilayah operasiIndonesiaTokohkunciHarry Warganegara[1](Direktur Utama)Sumardjo Gatot Irianto[2](Komisaris Utama)ProdukOlahan daging ayamOlahan daging sapiFurniturMerekBe-BestJasaPeternakan ayamPeternakan sapiLogistikPendapatanRp 1,748 triliun (2020)[3]Laba bersihRp 62,489 milyar (2020)&#...

 

American politician (1819–1898) For the English footballer, see Jimmy Broadhead. James BroadheadUnited States Ambassador to SwitzerlandIn officeJuly 5, 1893 – November 1, 1895PresidentGrover ClevelandPreceded byPerson CheneySucceeded byJohn PeakMember of the U.S. House of Representativesfrom Missouri's 9th districtIn officeMarch 4, 1883 – March 3, 1885Preceded byNicholas FordSucceeded byJohn M. Glover Personal detailsBornJames Overton Broadhead(1819-05-29)M...

التوزيعالجغرافي:—تصنيفات اللغوية:Defaultلغات سيووية موقع اللغات السيووية قبل دخول المستوطنين الأوروبيين السيووية هي عائلة لغوية في شمال أمريكا.[1][2] كان الناطقون بلغاتها قبائل منتشرة من فرجينيا في الولايات المتحدة إلى ألبيرتا في كندا، ولا يزال عدة آلاف يتكلمونها. أ�...

 

US Navy high speed transport USS Begor (APD-127) stands offshore during the evacuation and demolition of Hŭngnam, Korea, 24 December 1950. History United States NameUSS Begor NamesakeFay B. Begor Ordered1942 BuilderDefoe Shipbuilding Company, Bay City, Michigan Laid down6 March 1944 Launched25 May 1944 Commissioned14 March 1945 Decommissioned20 July 1959 Recommissioned20 November 1961 Decommissioned13 July 1962 ReclassifiedLPR-127, 1 January 1969 Stricken15 May 1975 Honors andawards5 battle ...

 

India government agency Bureau of ImmigrationAgency overviewFormed1971; 53 years ago (1971)HeadquartersEast Block-VIII, Level-V, Sector-1, Rama Krishna Puram, New Delhi[1]Employees6000Minister responsibleAmit Shah, Minister of Home AffairsDeputy Ministers responsibleAjay Kumar Mishra, Minister of State for Home AffairsNityanand Rai, Minister of State for Home Affairs Nisith Pramanik Minister of State for Home AffairsAgency executiveHarinath Mishra IPS:1990, Commissio...

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

Santo Nikolaus dari Myra Santo Nikolaus dari Myra, yang dieja pula dengan nama Nikolas, adalah seorang uskup yang sangat populer yang berasal dari Myra.[1] Ia pernah dipenjarakan di bawah pemerintahan Kaisar Dioklesianus.[1] Nikolaus adalah santo pelindung Rusia, para pelaut dan anak-anak.[1] Pada hari pestanya pada tanggal 6 Desember, ia membawa berbagai macam hadiah untuk anak-anak.[1] Santo Nikolaus dikenal sebagai santo yang sangat baik hati dan oleh karena...

 

Microsporidia Sporoblast ofFibrillanosema crangonycis Klasifikasi ilmiah Domain: Eukaryota (tanpa takson): Opisthokonta Kerajaan: Fungi Divisi: MicrosporidiaBalbiani, 1882[1] Classes and orders Lihat teks. Sinonim Microsporidiida Labbé, 1899 Microsporea Delphy, 1936 [1963], Levine et al., 1980[2][3] Microsporidea Corliss & Levine, 1963[4] Microspora Sprague, 1969, 1977[5] Microsporida Tuzet at al. 1971 Microsporidia merupakan kelompok parasit pemb...

1931 film Schubert's Dream of SpringDirected byRichard OswaldWritten byLeo LaskoArthur Rebner [de]Produced byErich Morawsky [de]Richard OswaldStarringCarl Jöken [de]Gretl TheimerAlfred LäutnerWilly StettnerCinematographyWilly GoldbergerEdited byPaul Falkenberg [de]Music byFelix Günther [de]ProductioncompanyRichard-Oswald-ProduktionDistributed byAtlas-FilmverleihRelease date 30 January 1931 (1931-01-30) (Ber...

 

Progetto:Forme di vita - implementazione Classificazione APG IV.Il taxon oggetto di questa voce deve essere sottoposto a revisione tassonomica. Se vuoi contribuire all'aggiornamento vedi Progetto:Forme di vita/APG IV. Come leggere il tassoboxPhalaris arundinaceaClassificazione APG IVDominioEukaryota RegnoPlantae (clade)Commelinidi OrdinePoales FamigliaPoaceae Classificazione CronquistDominioEukaryota RegnoPlantae DivisioneMagnoliophyta ClasseLiliopsida SottoclasseCommelinidae OrdineCyperales...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Servants of Charity – news · newspapers · books · scholar · JSTOR (April 2015) (Learn how and when to remove this message) Congregation of the Servants of CharityCongregatio Servorum a Charitate (Latin)[1]AbbreviationPost-nominal letters: S.C.[2]...

من الباندا والناس Of Pandas and People: The Central Question of Biological Origins معلومات الكتاب المؤلف دين كينون وبرسيفال ديفيس اللغة إنجليزية الناشر مؤسسة للفكر والأخلاق تاريخ النشر 1989 الموضوع تصميم ذكي  التقديم عدد الصفحات 170 المواقع ردمك ISBN 0-914513-40-0 OCLC 27973099  تعديل مصدري - تعديل   من الباندا...

 

Eastern European pancake BliniBliniAlternative namesblin, blinyTypepancakeMain ingredientswheat, eggs, milk Cookbook: Bliny  Media: Blini Blini (plural blinis or blini, rarely bliny;[1][2] Russian: блины pl.), singular: blin, are an Eastern European pancake made from various kinds of flour of buckwheat, wheat, etc. They may be served with smetana, tvorog, caviar and other garnishes, or simply smeared with butter. They are considered to be a traditional Russian di...

 

La structure des protéines est la composition en acides aminés et la conformation en trois dimensions des protéines. Elle décrit la position relative des différents atomes qui composent une protéine donnée. Les protéines sont des macromolécules de la cellule, dont elles constituent la « boîte à outils », lui permettant de digérer sa nourriture, produire son énergie, de fabriquer ses constituants, de se déplacer, etc. Elles se composent d'un enchaînement linéaire d'...

Combined organization of the US and Canada providing air defence for North America For other uses, see NORAD (disambiguation). North American Aerospace Defense CommandCommandement de la Défense Aérospatiale de l'Amérique du NordCrest of North American Aerospace Defense CommandFounded12 May 1958(66 years, 2 months)[1]Countries United States CanadaTypeBinational CommandRoleConducting aerospace warning, aerospace control and maritime warning in the defense of North...

 

1966 Cambodian general election ← 1962 11 September 1966 1972 → All 82 seats in the National Assembly42 seats needed for a majority   First party   Leader Norodom Sihanouk Party Sangkum Seats before 77 Seats won 82 Seat change 5 Percentage 100% Prime Minister before election Norodom Kantol Sangkum Elected Prime Minister Lon Nol Sangkum General elections were held in Cambodia on 11 September 1966.[1] Only candidates of the Sangkum party we...

 

American politician George Loomis BeckerMember of the Minnesota Senatefrom the 1st districtIn office1868–18726th Mayor of Saint Paul, MinnesotaIn office1856–1857Preceded byAlexander RamseySucceeded byJohn B. Brisbin Personal detailsBornFebruary 4, 1829Locke, New York, U.S.DiedJanuary 6, 1904St. Paul, Minnesota, U.S.Political partyDemocraticEducationCase Western Reserve UniversityUniversity of Michigan George Loomis Becker (February 4, 1829 – January 6, 1904) was an American lawyer and D...

Giovanni Battista Re, dewan petahana Kepala Dewan Kardinal (bahasa Latin: Decanus Sacri Collegii) adalah kepala (presiden) Dewan Kardinal dalam Gereja Katolik Roma. Posisi tersebut dibentuk pada awal abad ke-12. Jabatan ini diduduki oleh seorang kardinal dengan peringkat uskup. Kepala yang terpilih menjadi Paus Terdapat delapan Ketua yang terpilih menjadi Paus: Anastasius IV, Lusius III, Gregorius IX, Aleksander IV, Aleksander VI, Paulus III, Paulus IV, Benediktus XVI. Pranala luar http:/...

 

Espinchal La place principale du village d'Espinchal. Héraldique Administration Pays France Région Auvergne-Rhône-Alpes Département Puy-de-Dôme Arrondissement Issoire Intercommunalité Communauté de communes du Massif du Sancy Maire Mandat Jean-Luc Chanier 2020-2026 Code postal 63850 Code commune 63153 Démographie Gentilé Espinchalous Populationmunicipale 84 hab. (2021 ) Densité 9,5 hab./km2 Géographie Coordonnées 45° 23′ 42″ nord, 2° 52′ ...