Particle of colloidal dimensions that exists in equilibrium with the molecules or ions in solution from which it is formed.[1][2]
Micelle (polymers)
Organized auto-assembly formed in a liquid and composed of amphiphilic macromolecules, in general amphiphilic di- or tri-block copolymers made of solvophilic and solvophobic blocks.
Note 1
An amphiphilic behavior can be observed for water and an organic solvent or between two organic solvents.
Note 2
Polymeric micelles have a much lower critical micellar concentration (CMC) than soap (0.0001 to 0.001 mol/L) or surfactant micelles, but are nevertheless at equilibrium with isolated macromolecules called unimers. Therefore, micelle formation and stability are concentration-dependent.[3]
A micelle (/maɪˈsɛl/) or micella (/maɪˈsɛlə/) (pl.micelles or micellae, respectively) is an aggregate (or supramolecular assembly) of surfactant amphipathic lipid molecules dispersed in a liquid, forming a colloidal suspension (also known as associated colloidal system).[4] A typical micelle in water forms an aggregate with the hydrophilic "head" regions in contact with surrounding solvent, sequestering the hydrophobic single-tail regions in the micelle centre.
This phase is caused by the packing behavior of single-tail lipids in a bilayer. The difficulty in filling the volume of the interior of a bilayer, while accommodating the area per head group forced on the molecule by the hydration of the lipid head group, leads to the formation of the micelle. This type of micelle is known as a normal-phase micelle (or oil-in-water micelle). Inverse micelles have the head groups at the centre with the tails extending out (or water-in-oil micelle).
Micelles are approximately spherical in shape. Other shapes, such as ellipsoids, cylinders, and bilayers, are also possible. The shape and size of a micelle are a function of the molecular geometry of its surfactant molecules and solution conditions such as surfactant concentration, temperature, pH, and ionic strength. The process of forming micelles is known as micellisation and forms part of the phase behaviour of many lipids according to their polymorphism.[5]
History
The ability of a soapy solution to act as a detergent has been recognized for centuries. However, it was only at the beginning of the twentieth century that the constitution of such solutions was scientifically studied. Pioneering work in this area was carried out by James William McBain at the University of Bristol. As early as 1913, he postulated the existence of "colloidal ions" to explain the good electrolytic conductivity of sodium palmitate solutions.[6] These highly mobile, spontaneously formed clusters came to be called micelles, a term borrowed from biology and popularized by G.S. Hartley in his classic book Paraffin Chain Salts: A Study in Micelle Formation.[7] The term micelle was coined in nineteenth century scientific literature as the ‑ellediminutive of the Latin word mica (particle), conveying a new word for "tiny particle".[8]
Solvation
Individual surfactant molecules that are in the system but are not part of a micelle are called "monomers". Micelles represent a molecular assembly, in which the individual components are thermodynamically in equilibrium with monomers of the same species in the surrounding medium. In water, the hydrophilic "heads" of surfactant molecules are always in contact with the solvent, regardless of whether the surfactants exist as monomers or as part of a micelle. However, the lipophilic "tails" of surfactant molecules have less contact with water when they are part of a micelle—this being the basis for the energetic drive for micelle formation. In a micelle, the hydrophobic tails of several surfactant molecules assemble into an oil-like core, the most stable form of which having no contact with water. By contrast, surfactant monomers are surrounded by water molecules that create a "cage" or solvation shell connected by hydrogen bonds. This water cage is similar to a clathrate and has an ice-like crystal structure and can be characterized according to the hydrophobic effect. The extent of lipid solubility is determined by the unfavorable entropy contribution due to the ordering of the water structure according to the hydrophobic effect.
Micelles composed of ionic surfactants have an electrostatic attraction to the ions that surround them in solution, the latter known as counterions. Although the closest counterions partially mask a charged micelle (by up to 92%), the effects of micelle charge affect the structure of the surrounding solvent at appreciable distances from the micelle. Ionic micelles influence many properties of the mixture, including its electrical conductivity. Adding salts to a colloid containing micelles can decrease the strength of electrostatic interactions and lead to the formation of larger ionic micelles.[9] This is more accurately seen from the point of view of an effective charge in hydration of the system.
Micelles form only when the concentration of surfactant is greater than the critical micelle concentration (CMC), and the temperature of the system is greater than the critical micelle temperature, or Krafft temperature. The formation of micelles can be understood using thermodynamics: Micelles can form spontaneously because of a balance between entropy and enthalpy. In water, the hydrophobic effect is the driving force for micelle formation, despite the fact that assembling surfactant molecules is unfavorable in terms of both enthalpy and entropy of the system. At very low concentrations of the surfactant, only monomers are present in solution. As the concentration of the surfactant is increased, a point is reached at which the unfavorable entropy contribution, from clustering the hydrophobic tails of the molecules, is overcome by a gain in entropy due to release of the solvation shells around the surfactant tails. At this point, the lipid tails of a part of the surfactants must be segregated from the water. Hence, they start to form micelles. In broad terms, above the CMC, the loss of entropy due to assembly of the surfactant molecules is less than the gain in entropy by setting free the water molecules that were "trapped" in the solvation shells of the surfactant monomers. Also important are enthalpic considerations, such as the electrostatic interactions that occur between the charged parts of surfactants.
Micelle packing parameter
The micelle packing parameter equation is utilized to help "predict molecular self-assembly in surfactant solutions":[10]
where is the surfactant tail volume, is the tail length, and is the equilibrium area per molecule at the aggregate surface.
Block copolymer micelles
The concept of micelles was introduced to describe the core-corona aggregates of small surfactant molecules, however it has also extended to describe aggregates of amphiphilic block copolymers in selective solvents.[11][12] It is important to know the difference between these two systems. The major difference between these two types of aggregates is in the size of their building blocks. Surfactant molecules have a molecular weight which is generally of a few hundreds of grams per mole while block copolymers are generally one or two orders of magnitude larger. Moreover, thanks to the larger hydrophilic and hydrophobic parts, block copolymers can have a much more pronounced amphiphilic nature when compared to surfactant molecules.
Because of these differences in the building blocks, some block copolymer micelles behave like surfactant ones, while others do not. It is necessary therefore to make a distinction between the two situations. The former ones will belong to the dynamic micelles while the latter will be called kinetically frozen micelles.
Dynamic micelles
Certain amphiphilic block copolymer micelles display a similar behavior as surfactant micelles. These are generally called dynamic micelles and are characterized by the same relaxation processes assigned to surfactant exchange and micelle scission/recombination. Although the relaxation processes are the same between the two types of micelles, the kinetics of unimer exchange are very different. While in surfactant systems the unimers leave and join the micelles through a diffusion-controlled process, for copolymers the entry rate constant is slower than a diffusion controlled process. The rate of this process was found to be a decreasing power-law of the degree of polymerization of the hydrophobic block to the power 2/3. This difference is due to the coiling of the hydrophobic block of a copolymer exiting the core of a micelle.[13]
Block copolymers which form dynamic micelles are some of the tri-block poloxamers under the right conditions.
Kinetically frozen micelles
When block copolymer micelles do not display the characteristic relaxation processes of surfactant micelles, these are called kinetically frozen micelles. These can be achieved in two ways: when the unimers forming the micelles are not soluble in the solvent of the micelle solution, or if the core forming blocks are glassy at the temperature in which the micelles are found. Kinetically frozen micelles are formed when either of these conditions is met. A special example in which both of these conditions are valid is that of polystyrene-b-poly(ethylene oxide). This block copolymer is characterized by the high hydrophobicity of the core forming block, PS, which causes the unimers to be insoluble in water. Moreover, PS has a high glass transition temperature which is, depending on the molecular weight, higher than room temperature. Thanks to these two characteristics, a water solution of PS-PEO micelles of sufficiently high molecular weight can be considered kinetically frozen. This means that none of the relaxation processes, which would drive the micelle solution towards thermodynamic equilibrium, are possible.[14] Pioneering work on these micelles was done by Adi Eisenberg.[15] It was also shown how the lack of relaxation processes allowed great freedom in the possible morphologies formed.[16][17] Moreover, the stability against dilution and vast range of morphologies of kinetically frozen micelles make them particularly interesting, for example, for the development of long circulating drug delivery nanoparticles.[18]
Inverse/reverse micelles
In a non-polar solvent, it is the exposure of the hydrophilic head groups to the surrounding solvent that is energetically unfavourable, giving rise to a water-in-oil system. In this case, the hydrophilic groups are sequestered in the micelle core and the hydrophobic groups extend away from the center. These inverse micelles are proportionally less likely to form on increasing headgroup charge, since hydrophilic sequestration would create highly unfavorable electrostatic interactions.
It is well established that for many surfactant/solvent systems a small fraction of the inverse micelles spontaneously acquire a net charge of +qe or -qe. This charging takes place through a disproportionation/comproportionation mechanism rather than a dissociation/association mechanism and the equilibrium constant for this reaction is on the order of 10−4 to 10−11, which means about every 1 in 100 to 1 in 100 000 micelles will be charged.[19]
Supermicelles
Supermicelle is a hierarchical micelle structure (supramolecular assembly) where individual components are also micelles. Supermicelles are formed via bottom-up chemical approaches, such as self-assembly of long cylindrical micelles into radial cross-, star- or dandelion-like patterns in a specially selected solvent; solid nanoparticles may be added to the solution to act as nucleation centers and form the central core of the supermicelle. The stems of the primary cylindrical micelles are composed of various block copolymers connected by strong covalent bonds; within the supermicelle structure they are loosely held together by hydrogen bonds, electrostatic or solvophobic interactions.[20][21]
Uses
When surfactants are present above the critical micelle concentration (CMC), they can act as emulsifiers that will allow a compound that is normally insoluble (in the solvent being used) to dissolve. This occurs because the insoluble species can be incorporated into the micelle core, which is itself solubilized in the bulk solvent by virtue of the head groups' favorable interactions with solvent species. The most common example of this phenomenon is detergents, which clean poorly soluble lipophilic material (such as oils and waxes) that cannot be removed by water alone. Detergents clean also by lowering the surface tension of water, making it easier to remove material from a surface. The emulsifying property of surfactants is also the basis for emulsion polymerization.
Micelles may also have important roles in chemical reactions. Micellar chemistry uses the interior of micelles to harbor chemical reactions, which in some cases can make multi-step chemical synthesis more feasible.[22][23] Doing so can increase reaction yield, create conditions more favorable to specific reaction products (e.g. hydrophobic molecules), and reduce required solvents, side products, and required conditions (e.g. extreme pH). Because of these benefits, Micellular chemistry is thus considered a form of green chemistry.[24] However, micelle formation may also inhibit chemical reactions, such as when reacting molecules form micelles that shield a molecular component vulnerable to oxidation.[25]
The use of cationic micelles of cetrimonium chloride, benzethonium chloride, and cetylpyridinium chloride can accelerate chemical reactions between negatively charged compounds (such as DNA or Coenzyme A) in an aqueous environment up to 5 million times.[26] Unlike conventional micellar catalysis,[27] the reactions occur solely on the charged micelles' surface.
Micelle formation is essential for the absorption of fat-soluble vitamins and complicated lipids within the human body. Bile salts formed in the liver and secreted by the gall bladder allow micelles of fatty acids to form. This allows the absorption of complicated lipids (e.g., lecithin) and lipid-soluble vitamins (A, D, E, and K) within the micelle by the small intestine.
During the process of milk-clotting, proteases act on the soluble portion of caseins, κ-casein, thus originating an unstable micellar state that results in clot formation.
^Hartley GS, Donnan FG (1936). Aqueous Solutions of Paraffin Chain Salts, A Study in Micelle Formation. Paris: Hermann et Cie.
^"Micelle". Merriam-Webster Dictionary. Retrieved September 29, 2018.
^Turro NJ, Yekta A (1978). "Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles". Journal of the American Chemical Society. 100 (18): 5951–5952. Bibcode:1978JAChS.100.5951T. doi:10.1021/ja00486a062.
^Nagarajan R (2002). "Molecular Packing Parameter and Surfactant Self-Assembly: The Neglected Role of the Surfactant Tail†". Langmuir. 18: 31–38. doi:10.1021/la010831y.
^Hamley IW (2005). Block Copolymers in Solution. Wiley.
^Zana R, Marques C, Johner A (November 2006). "Dynamics of micelles of the triblock copolymers poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) in aqueous solution". Advances in Colloid and Interface Science. Special Issue in Honor of Dr. K. L. Mittal. 123–126: 345–351. doi:10.1016/j.cis.2006.05.011. PMID16854361.
^Nicolai T, Colombani O, Chassenieux C (2010). "Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers". Soft Matter. 6 (14): 3111. Bibcode:2010SMat....6.3111N. doi:10.1039/b925666k.
^Prescott RJ (1983). "An analysis of factors associated with self-referral to a general practitioner". Journal of Psychosomatic Research. 27 (4): 327–328. doi:10.1016/0022-3999(83)90056-9. PMID6620210.
^Zhu J, Hayward RC (June 2008). "Spontaneous generation of amphiphilic block copolymer micelles with multiple morphologies through interfacial Instabilities". Journal of the American Chemical Society. 130 (23): 7496–7502. Bibcode:2008JAChS.130.7496Z. doi:10.1021/ja801268e. PMID18479130.
^Lipshutz BH, Petersen TB, Abela AR (April 2008). "Room-temperature Suzuki-Miyaura couplings in water facilitated by nonionic amphiphiles". Organic Letters. 10 (7). American Chemical Society (ACS): 1333–1336. doi:10.1021/ol702714y. PMID18335944.
^Macquarrie DJ (2009-05-27). "Organically Modified Micelle Templated Silicas in Green Chemistry". Topics in Catalysis. 52 (12). Springer Science and Business Media LLC: 1640–1650. doi:10.1007/s11244-009-9301-6. ISSN1022-5528. S2CID98477345.
^Ji Y, Niu J, Fang Y, Nou AT, Warsinger DM (2021). "Micelles inhibit electro-oxidation degradation of nonylphenol ethoxylates". Chemical Engineering Journal. 430. Elsevier BV: 133167. doi:10.1016/j.cej.2021.133167. ISSN1385-8947. S2CID239937828.
^Dwars T, Paetzold E, Oehme G (November 2005). "Reactions in micellar systems". Angewandte Chemie. 44 (44): 7174–7199. doi:10.1002/anie.200501365. PMID16276555.
^Chen X, An Y, Zhao D, He Z, Zhang Y, Cheng J, Shi L (August 2008). "Core-shell-corona au-micelle composites with a tunable smart hybrid shell". Langmuir. 24 (15): 8198–8204. doi:10.1021/la800244g. PMID18576675.
Home Owners' Loan CorporationThe former federal headquarters of the Home Owners' Loan Corporation[1]JenisPerusahaan yang disponsori oleh pemerintahIndustriLayanan finansialDidirikan13 Juni 1933 (1933-06-13)Ditutup04 Februari 1954 (1954-02-04)KantorpusatWashington, D.C.JasaLayanan kreditKaryawan20,000 (1935) and declined to less than 500 (1950) Home Owners' Loan Corporation (HOLC) adalah sebuah perusahaan yang disponsori oleh pemerintah yang dibuat sebagai bagian dari New Dea...
Peta koordinat semua menggunakan: OpenStreetMap Unduh koordinat sebagai: KML Berikut ini adalah daftar gunung berapi aktif dan punah di Rusia. Rusia Eropa Nama Ketinggian (m) Ketinggian (ft) Koordinat Area Letusan terakhir Kazbek 5033 16,512 42°31′N 44°19′E / 42.51°N 44.31°E / 42.51; 44.31 (Kazbek) Pegunungan Kaukasus 750 SM Elbrus 5642 18,510 43°20′N 42°27′E / 43.33°N 42.45°E / 43.33; 42.45 (Elbrus) Pegunu...
1972 studio album by Uriah HeepThe Magician's BirthdayCover art by Roger DeanStudio album by Uriah HeepReleasedNovember 1972RecordedSeptember–October 1972StudioLansdowne (London)GenreHard rockprogressive rockheavy metalLength37:34LabelBronzeProducerGerry BronUriah Heep chronology Demons and Wizards(1972) The Magician's Birthday(1972) Sweet Freedom(1973) Singles from The Magician's Birthday Spider Woman / SunriseReleased: December 1972 (EU and Japan)[1] Sweet LorraineRelease...
British actor This article is about the actor. For the Scottish professional footballer, see Ian McShane (footballer). Ian McShaneMcShane in October 2022BornIan David McShane (1942-09-29) 29 September 1942 (age 81)Blackburn, Lancashire, EnglandAlma materRoyal Academy of Dramatic ArtOccupationActorYears active1962–presentSpouses Suzan Farmer (m. 1965; div. 1968) Ruth Post (m. 1970; div....
1973 television special A Charlie Brown ThanksgivingGenreAnimated television specialCreated byCharles M. SchulzBased onPeanutsWritten byCharles M. SchulzDirected byBill MelendezPhil RomanVoices ofBill MelendezTodd BarbeeStephen SheaHilary MombergerRobin KohnChristopher DeFariaJimmy AhrensRobin ReedTheme music composerVince GuaraldiOpening themeThanksgiving ThemeEnding themeThanksgiving ThemeComposersVince GuaraldiJohn Scott TrotterCountry of originUnited StatesOriginal languageEnglishProducti...
آب جالريالشعارمعلومات عامةنوع متجر تطبيقات نظام التشغيل أندرويدهارموني أو إس المنصة أندرويد — هارموني أو إس موقع الويب appgallery.huawei.com (لغات متعددة) معلومات تقنيةالإصدار الأول 2017 [1] الإصدار الأخير 13.2.1.301 (14 يوليو 2023) تعديل - تعديل مصدري - تعديل ويكي بيانات شارة AppGallery مع نص Ex...
Hermeneutika Alkitab adalah suatu usaha untuk menjelaskan, menginterpretasi, dan menerjemahkan teks-teks Alkitab.[1] Alkitab perlu dijelaskan supaya isinya dapat dipahami oleh umat.[1] Melalui proses tersebut, pembaca dapat mengerti berita yang disampaikan oleh Alkitab.[2] Unsur penafsiran yang paling kuat adalah bahasa karena selalu berhubungan dengan komunikasi.[3] Latar Belakang Hermeneutika berasal dari bahasa Yunani, yaitu ερμηνευτική.[1 ...
Diagram skema mata manusia. Kornea (5) terletak di bagian atas diagram. Kornea atau selaput bening adalah bagian depan mata yang tembus pandang yang menutupi iris dan pupil.[1] Bila kornea disentuh maka kelopak mata akan menutup secara refleks. Kornea tidak memiliki pembuluh darah. Kontribusi kornea selain sebagai pertahanan fisik dan kimia bola mata juga sebagai komponen media refraktif berkekuatan 40-44 Dioptri. Kornea memiliki tingkat kelengkungan yang bervariasi dari kelengkungan ...
Keith AllenLahirKeith AllenSuami/istriAlison Owen (1982–1989)Nira Park (bercerai)AnakLily AllenAlfie Owen-Allen Keith Philip George Allen (lahir 2 Juni 1953) adalah pelawak, aktor, penyanyi dan penulis Inggris kelahiran Wales. Ia muncul dalam berbagai film karya The Comic Strip Presents... Ia menikah dengan empat wanita dan memiliki enam anak, termasuk penyanyi Lily Allen dan aktor Alfie Owen-Allen. Pranala luar Keith Allen di IMDb (dalam bahasa Inggris) Guardian Unlimited profile Pengawas...
2013 civil unrest in Singapore 2013 Little India riotDate8 December 2013; 10 years ago (2013-12-08)LocationJunction of Race Course Road and Hampshire RoadCaused byTraffic accidentMethodsRiotingParties Singapore Police Force Special Operations Command 300~ rioters[1] Lead figures Teo Chee Hean S. Iswaran Ng Joo Hee Hoong Wee Teck CasualtiesInjuries62Arrested40Charged33 The 2013 Little India riot took place on 8 December 2013 after a fatal accident occurred at SST 21:2...
Pour les articles homonymes, voir Angel Dust. Angel Dust Angel Dust en 2018Informations générales Pays d'origine Allemagne Genre musical Power metal, heavy metal, thrash metal, speed metal, metal progressif Années actives 1984–1988, 1997–2010, depuis 2016 Labels No Remorse Records, Disaster (ancien), Century Media Records (ancien) Composition du groupe Membres Frank BanxDirk Assmuth (batterie)Dirk ThurischBernd AufermannSteven Banx Anciens membres Andreas LohrumRoman « Romme...
Cet article est une ébauche concernant Los Angeles. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Leimert ParkGéographiePays États-UnisÉtat CalifornieComté comté de Los AngelesCharter city Los AngelesCoordonnées 34° 00′ 28″ N, 118° 19′ 38″ OIdentifiantsGNIS 244720modifier - modifier le code - modifier Wikidata Leimert Park est à la fois le nom d'un quartier...
Skin condition characterized by small bumps caused by overproduction of keratin Medical conditionKeratosis pilarisOther namesFollicular keratosis, lichen pilarisCondition on a calfSpecialtyDermatology Keratosis pilaris (KP; also follicular keratosis, lichen pilaris, or colloquially chicken skin[1]) is a common, autosomal-dominant, genetic condition of the skin's hair follicles characterized by the appearance of possibly itchy, small, gooseflesh-like bumps, with varying degrees of redd...
Cet article est une ébauche concernant un terme géographique. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Carte de l'hémisphère est. L'hémisphère est[1] ou hémisphère oriental, est la moitié de la Terre comprise à l'est du méridien de Greenwich jusqu'au 180e méridien. Il couvre le continent asiatique, l'océan Indien, l'Australie, la plupart du continent africain et du continent européen, u...
For the river, see Mattapoisett River.Town in Massachusetts, United StatesMattapoisett, MassachusettsTownNed's Point Light SealLocation in Plymouth County in MassachusettsCoordinates: 41°39′30″N 70°49′00″W / 41.65833°N 70.81667°W / 41.65833; -70.81667CountryUnited StatesStateMassachusettsCountyPlymouthSettled1750IncorporatedMay 21, 1857Government • TypeOpen town meetingArea • Total24.2 sq mi (62.6 km2) • L...
Rogers Morton Fonctions Conseiller du président des États-Unis 2 février – 1er avril 1976 Président Gerald Ford Gouvernement Administration Ford Prédécesseur John Marsh Successeur John Marsh 22e secrétaire au Commerce des États-Unis 1er mai 1975 – 2 février 1976(9 mois et 1 jour) Président Gerald Ford Gouvernement Administration Ford Prédécesseur Frederick Baily Dent Successeur Elliot Richardson 39e secrétaire à l'Intérieur des États-Unis 29 janvier 1971 – 30 ...
American Abstract expressionist painter (1905–1988) Perle FineBorn1905 (1905)Boston, MassachusettsDied1988 (aged 82–83)East Hampton, New YorkNationalityAmericanKnown forPaintingMovementAbstract expressionism Perle Fine (born Poule Feine)[1](1905–1988) was an American Abstract expressionist painter.[2] Fine's work was most known by its combination of fluid and brushy rendering of the materials and the use of biomorphic forms encased and intertwined with...
أطلانتس: الإمبراطورية المفقودةAtlantis: The Lost Empire (بالإنجليزية) الشعارمعلومات عامةالتصنيف فيلم رسوم متحركة الصنف الفني القائمة ... فيلم خيال علمي[1] — فيلم فنتازيا — فيلم مغامرة[2][1] — قصة تقدم في العمر — فيلم رسوم متحركة تحريكًا تقليديًّا — فيلم دراما — فيلم أك�...
1988 live album by Joan BaezDiamonds & Rust in the BullringLive album by Joan BaezReleasedDecember 1988RecordedBilbao, Spain, 1988GenreFolkLength36:19LabelGold CastleProducerAlan AbrahamsJoan Baez chronology Recently(1987) Diamonds & Rust in the Bullring(1988) Speaking of Dreams(1989) Diamonds & Rust in the Bullring is a Joan Baez album, recorded live in the bullring of Bilbao, Spain. It featured twelve songs, six of which were performed in English, five in Spanish and one...