Share to: share facebook share twitter share wa share telegram print page

Submarine Telegraph Company

The Submarine Telegraph Company was a British company which laid and operated submarine telegraph cables.

Jacob and John Watkins Brett formed the English Channel Submarine Telegraph Company to lay the first cable across the English Channel. An unarmoured cable with gutta-percha insulation was laid in 1850. The recently introduced gutta-percha was the first thermoplastic material available to cable makers and was resistant to seawater. This first unarmoured cable was a failure and was soon broken either by a French fishing boat or by abrasion on the rocks off the French coast.

The Bretts formed a new company, the Submarine Telegraph Company, and laid a new cable in 1851. This cable had multiple conductors and iron wire armouring. Telegraph communication with France was established for the first time in October of that year. This was the first undersea telegraph cable to be put in service anywhere in the world.

The Company continued to lay, and operate, more cables between England and the Continent until they were nationalised in 1890. Through a series of mergers they ultimately became part of Cable and Wireless (CW). The Times commemorated the 50th anniversary of the cable in 1900; CW and the Science Museum, London did the same on the 100th anniversary in 1950.

History

Goliath laying the 1850 cable

In 1847, the Bretts obtained a concession from the French government to lay and operate a submarine telegraph cable across the Channel. The concession lapsed without anything being achieved.[1] A proof of principle was conducted in 1849 by Charles Vincent Walker of the South Eastern Railway Company using gutta-percha insulated cable. Gutta-percha, recently introduced by William Montgomerie for making medical equipment, was a natural rubber that was found to be ideal for insulating ocean cables. Walker laid two miles (3.2 km) of the cable from the ship Princess Clementine off the coast of Folkestone. With the other end connected to the railway telegraph lines, he successfully sent telegraph messages from the ship to London.[2] At the conclusion of the experiment, South Eastern Railway reused the cable in a wet railway tunnel.[3]

In the same year, the Bretts had the Channel concession renewed for ten years, but only on condition that communication was established by September 1850. The English Channel Submarine Telegraph Company was formed to carry out this task. The Gutta Percha Company was contracted to manufacture the cable. A paddle tug, Goliath was chartered for cable laying. Goliath transported the cable from the manufacturing plant in Greenwich to Dover in short lengths which were then spliced together onto a single drum.[4]

Winding the cable onto the drum took some time. The individual lengths were retested in water at Dover quayside and repaired as necessary before joining on the drum. Unattended cable suffered from the attentions of souvenir hunters who cut off pieces, or stripped the insulation to confirm to themselves that there was copper inside. It was difficult to wind the cable evenly on the drum because the joints caused bulges and because the manufacturing process did not produce perfectly regular cable. Cotton packing and wooden slats were used to smooth out the unevenness, slowing the process even further.[5]

A lead weight from the 1850 cable

Goliath laid the cable between Dover and Cap Gris Nez in France on 28 August 1850. Unlike later submarine cables, this one had no armouring to protect it. The single copper wire was protected only by the layer of gutta-percha insulation around it. This made it very light, and it was necessary to attach periodic lead weights to make it sink. Messages sent across the cable were unintelligible due to dispersion of the signal, a phenomenon which was not understood at the time, and would be an even greater problem to the first transatlantic telegraph cable. Dispersion was a problem not fully solved on submarine cables until loading started to be used at the beginning of the 20th century.[6] Both ends of the communication assumed that the messages did not make sense because the other end was in the midst of drunken celebrations of their success. It was decided to try again in the morning.[7] During the night the cable failed. Initial reports stated that cable was damaged where it passed over rocks near Cap Gris Nez, but later French fishermen were blamed. The cable was never put back into service.[8] While it is certainly true that French fishing boats recovered lengths of the cable hauled up in their nets, and in some cases cut the cable to free their gear, it remains unclear if this was the initial cause of the failure. A story circulated much later (from 1865) that the fisherman who initially cut the cable thought it was a new species of seaweed with gold in its centre. Although this story is still found in modern sources,[9] it is likely apocryphal.[10]

First working undersea cable

Construction of the 1851 Dover–Calais cable

The Bretts managed to renew their concession with a new date for establishing communication of October 1851. The company was reformed as the Submarine Telegraph Company in order to raise new capital. The largest investor was railway engineer Thomas Russell Crampton, who was put in charge of ordering the new cable. Crampton specified a much improved cable. The core of the new cable, again made by the Gutta Percha Company, was to have four conductors, substantially increasing the potential traffic, and insulated with gutta-percha as before. However, the four separate insulated conductors were not laid into a single cable by the Gutta Percha Company. This task was given to a wire-rope making company, Wilkins and Wetherly, who armoured the cable with an outer layer of helically laid iron wires.[11] Production was halted for a time due to a dispute with R.S. Newall and Company of Gateshead. Newall had a patent for manufacturing wire rope with a soft core to make it more flexible, and claimed that this submarine cable breached that patent. The issue was resolved by allowing Newall to take over production of the cable at Wilkins and Wetherly's Wapping premises.[12]

The first message being received from France. The telegraph instrument in the foreground is the Foy-Breguet telegraph to exchange messages with France. The instrument in the background is a Cooke and Wheatstone telegraph for onward transmission in England.

The completed cable was 25 nautical miles (46 km; 29 mi) long, far longer and heavier than anything the rope makers had previously manufactured, and there was some difficulty getting the cable out of the Wapping premises. There was no easy access and the adjacent business refused permission to cross their property, thinking that electrical apparatus would invalidate their fire insurance. However, a neighbouring business granted access, but the cable still had to be manually hauled to a wharf on the Thames. This was a difficult task which had to frequently be halted to tie back protruding broken iron wires. At the Thames, the cable was loaded on to the Blazer, a hulk loaned to the Submarine Telegraph Company by the government.[13]

The cable was laid between South Foreland and Sangatte by Blazer under tow from two tugs on 25 September 1851. The cable ran out a mile (1.6 km) before reaching Sangatte. As a temporary measure, a length of unarmoured cable used for the underground link from Sangatte to Calais was spliced on to enable the ocean cable to be landed. The telegraph station on the English side was in a private house in Dover. At first, they could not contact France, but soon discovered that the problem was not with the submarine cable. Rather a joint had been omitted in the underground cable between South Foreland and Dover. Telegraph communication between Britain and France was established for the first time on 15 October.[14]

In October, the steam tug Red Rover was tasked with replacing the temporary cable with a new section of armoured cable. Red Rover's first attempt was abandoned after running into bad weather. Trying again, it was discovered that there was no one on board who knew how to find Sangatte.[15] They arrived a day late and missed their rendezvous with HMS Widgeon which was tasked with making the splice at sea. The cable was finally landed and the splice made aboard Widgeon on 19 October.[16]

The line was finally open to the public on 19 November 1851.[17] The occasion was marked by setting off an electrical fuse over the telegraph from Dover to fire a cannon in Calais. In reply, Calais fired a cannon in Dover Castle.[18] The opening had again missed the French government deadline, but the concession was nevertheless renewed on 23 October for ten years from that date. The cable remained in service with the Submarine Telegraph Company for the lifetime of the company.[19] This was the first undersea submarine cable put into service. Werner von Siemens had used gutta-percha-insulated cable to cross the Rhine in 1847 and Kiel Harbour in 1848, but this was the first working undersea cable to link two countries.[20]

Manufacturing problems

"Effect of the submarine telegraph; or peace and good-will between England and France"

Early submarine cables had numerous quality problems. The insulation was not applied evenly leading to variations in the cable diameter and shape. The conductor was not held on the centreline of the insulation, in places coming close to the surface making it easy for the conductor to become exposed. The insulation was full of air pockets due to the gutta-percha being applied in one thick coat instead of several thinner coats. All these issues with the insulation caused inconsistencies in the electrical properties of the cable.[21]

Quality of the conductor was also inconsistent. The diameter of the copper was variable, again leading to inconsistent electrical properties. There was little experience with annealing long lengths of copper. This resulted in inconsistent mechanical properties with brittle portions in the wire.[22]

An even bigger problem was caused by the joints. The copper wire was supplied in short, inconsistent, lengths. Initially on the 1850 cable, joints were attempted by brazing a scarf joint with hard solder. However, the heat from the blowpipe softened the gutta-percha which became plastic and dripped off the cable. An alternative method was therefore used. Two inches of insulation was stripped from each end, the exposed wires twisted together and soft soldered. Sheets of gutta-percha heated to a plastic state were then wrapped around the joint and clamped in a mould. This resulted in a cigar-shaped bulge around the joint which was undesirable for cable laying.[23]

Nationalisation

The Submarine Telegraph Company went on to lay many more cables between Britain and the continent. In 1870 the inland telegraphs in Britain were nationalised, and in 1890 the cables and other assets of the Submarine Telegraph Company were taken over by the General Post Office.[24]

List of cables laid

List of cables laid by the Submarine Telegraph Company[25]
Year Route Cable ship Cable manufacturer* Notes
1851 South Foreland to Sangatte Blazer Wilkins and Weatherly/R.S. Newall and Company First undersea submarine cable in service
1853 Dover to Ostend William Hutt R.S. Newall and Company Six-core cable of same construction as the 1851 four-core
1858 Cromer to Emden William Cory Glass, Elliot & Co.
1859 Cromer to Heligoland William Cory
1859 Heligoland to Denmark Berwick
1859 Abbotscliff (Capel-le-Ferne) to Gris Nez Berwick
1859 Jersey to Pirou Resolute
1861 Beachy Head to Dieppe Glass, Elliot & Co.
1865 South Foreland to Gris Nez India Rubber, Gutta Percha and Telegraph Cable Company
1866 Lowestoft to Norderney William Cory Part of the Indo-European Telegraph Company's line to India
1866 St. Margaret's Bay to La Panne W. T. Henley
1870 Beachy Head to Cape d'Antifer W. T. Henley
1880 Jersey to Pirou

* Until 1863, all cable cores were made by the Gutta Percha Company as they had a monopoly on gutta-percha cable. In 1863, they merged with cable manufacturer Glass, Elliot & Co. to form the Telegraph Construction and Maintenance Company.[26]

References

  1. ^ Haigh, p. 192
  2. ^ Kieve, p. 102
  3. ^ Haigh, p. 27
  4. ^ Haigh, p. 192
  5. ^ Smith, pp. 3–4
  6. ^ Newell, p. 478
  7. ^ Smith, pp. 9–10
  8. ^
    • Haigh, p. 192
    • Huurdeman, p. 129
  9. ^ Huurdeman, p. 129
  10. ^ Glover & Burns
  11. ^ Haigh, p. 192
  12. ^ Smith, pp. 15–16
  13. ^ Smith, p. 16
  14. ^
    • Smith, p. 17
    • Haigh, pp. 192–193
  15. ^ Smith, p. 17
  16. ^
    • Smith, pp. 17–18
    • Haigh, p. 193
  17. ^ Haigh, p. 193
  18. ^ Smith, p. 18
  19. ^ Haigh, p. 193
  20. ^ Kieve, p. 101
  21. ^ Smith, p. 2
  22. ^ Smith, pp. 1–2
  23. ^ Smith, pp. 2–3
  24. ^ Haigh, p. 193
  25. ^ Haigh, p. 193
  26. ^ Haigh, p. 27

Bibliography

  • Glover, Bill; Burns, Bill, "The Submarine Telegraph Company", History of the Atlantic Cable & Undersea Communications, accessed and archived 5 August 2020.
  • Haigh, Kenneth Richardson, Cableships and Submarine Cables, Adlard Coles, 1968 OCLC 497380538.
  • Huurdeman, Anton A., The Worldwide History of Telecommunications, Wiley, 2003 ISBN 0471205052.
  • Kieve, Jeffrey L., The Electric Telegraph: A Social and Economic History, David and Charles, 1973 OCLC 655205099.
  • Newell, E. L., "Loading coils for ocean cables", Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics, vol. 76, iss. 4, pp. 478–482, September 1957.
  • Smith, Willoughby, The Rise and Extension of Submarine Telegraphy, J.S. Virtue & Company, 1891 OCLC 1079820592.

Read other articles:

Species of bird African skimmer Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Aves Order: Charadriiformes Family: Laridae Genus: Rynchops Species: R. flavirostris Binomial name Rynchops flavirostrisVieillot, 1816 The African skimmer (Rynchops flavirostris) is a species of bird belonging to the skimmer genus Rynchops in the family Laridae. It is found along rivers, lakes and lagoons in Sub-Sa…

TrollsDiciptakan olehDreamWorks AnimationKarya asliTrollsPemilikDreamWorks Animation(Universal Pictures)Film dan serial televisiFilmTrolls (2016)Trolls World Tour (2020)Trolls 3 (2023)Serial televisiTrolls: The Beat Goes On! (2018–2019)Trolls: TrollsTopia (2020–2021)TV spesialTrolls Holiday (2017)Trolls: Holiday in Harmony (2021)AudioJalur suaraTrolls (soundtrack)Trolls World Tour (soundtrack) Trolls adalah waralaba media animasi Amerika yang dibuat oleh DreamWorks Animation, terinspirasi ol…

Constituency in Ghana Walewaleconstituencyfor the Parliament of GhanaDistrictWest Mamprusi DistrictRegionNorth East Region of GhanaCurrent constituencyCreated2021PartyNew Patriotic PartyMPLariba Abudu Walewale is one of the constituencies represented in the Parliament of Ghana. It elects one Member of Parliament (MP) by the [first past the post] / Simple Majority] system of election. Walewale is located in the West Mamprusi Municipal of the North East Region of Ghana. It is the Municipal capital…

German electronicore band Electric CallboyElectric Callboy at Reload Festival in Germany, 2015Background informationAlso known asEskimo Callboy (2010–2022)OriginCastrop-Rauxel, North Rhine-Westphalia, GermanyGenres Electronicore metalcore melodic metalcore post-hardcore EDM Years active2010–presentLabels Redfield Spinefarm Radtone Music (Japan) Universal Century Media Members Kevin Ratajczak Daniel Danskimo Haniß Pascal Schillo Daniel Klossek David Friedrich Nico Sallach Past members Michae…

Now You're Gone Single de Basshunterextrait de l'album Now You're Gone: The Album Sortie 22 février 2008 (Europe) Enregistré 2007 Durée 2:34(Radio Edit) Genre Eurodance[1] Format Téléchargement de musique, CD single maxi single Auteur Basshunter, DJ Mental Theo's Bazzheadz Producteur Basshunter, Robert Uhlmann Label Hard2Beat Singles de Basshunter Jingle Bells(2007) Please Don't Go(2008)Pistes de Now You're Gone: The Album Now You're Gone All I Ever Wantedmodifier Now You're …

Der Titel dieses Artikels ist mehrdeutig. Für andere Bedeutungen siehe Cottereau (Begriffsklärung). Cottereau et Cie Logo Rechtsform Gründung 1891 Auflösung 1911 Sitz Dijon Leitung Louis Cottereau Branche Automobilhersteller Cottereau von 1902 Cottereau von 1906 Cottereau 18 HP von 1906 Cottereau et Cie war ein französischer Hersteller von Automobilen und Fahrrädern.[1][2][3] Inhaltsverzeichnis 1 Unternehmensgeschichte 2 Fahrzeuge 3 Literatur 4 Weblinks 5 Einzelnach…

Aftab AlamHakim Mahkamah Agung IndiaMasa jabatan12-11-2007–18-04-2013 Informasi pribadiKebangsaanIndiaProfesiHakimSunting kotak info • L • B Aftab Alam adalah hakim Mahkamah Agung India. Ia mulai menjabat sebagai hakim di mahkamah tersebut pada 12-11-2007. Masa baktinya sebagai hakim berakhir pada 18-04-2013.[1] Referensi ^ Daftar Hakim di Mahkamah Agung India. Mahkamah Agung India. Diakses tanggal 10 Juni 2021.  Artikel bertopik biografi India ini adalah sebuah rint…

Threes! Blue, white, and red vertical stripes with a black number 3 in the center, and a smiling face in yellow across the bottomApp iconРозробник SirvoВидавець SirvoДистриб'ютор Microsoft Store, Google Play і App StoreЖанр(и) головоломкаПлатформа iOS, Android, Xbox One, Windows Phone, web browserДата випуску iOS February 6, 2014 Android March 12, 2014 Xbox One December 5, 2014 Windows Phone April 27, 2015 Browser Decem…

Kawasan Konservasi Perairan Daerah Kabupaten Kotabaru (KKPD Kabupaten Kotabaru) adalah salah satu kawasan konservasi yang ada di Kalimantan Selatan, Indonesia. Dalam pembagian administratif Indonesia, KKPD Kabupaten Kotabaru berada di dalam wilayah administratif Kabupaten Kotabaru. Dasar hukum penetapannya adalah Surat Keputusan Nomor 523.4/918-PPPK/LAPERIK yang diterbitkan pada bulan November 2005. Nama lain dari KKPD Kabupaten Kotabaru adalah Kawasan Konservasi Perairan Pulau Laut Barat-Selata…

Umredbandar kota (kerajaan tempatan)Peta India. BenderaNegaraIndiaNegara bagianMaharashtraDistrikNagpurbandar kota (kerajaan tempatan)UmredPopulasi (2001) • Total49,573 • Melek huruf36.947 (20.579 lelaki 16.368 perempuan) • Jenis kelamin56% lelaki dan 44% perempuanZona waktuGMT • Musim panas (DST)GMTbawah 6 tahun6085 (2001) Umred adalah sebuah kota yang terletak di Distrik Nagpur di negara bagian Maharashtra, India. Demografi 2001 Menurut sens…

此條目没有列出任何参考或来源。 (2018年2月3日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 巴基斯坦清真寺旁的日落 伊斯蘭教,巴基斯坦的國教。穆斯林佔大約96%的人口(1998年人口普查)。巴基斯坦的穆斯林人數在世界上排名第二,僅次於印尼。91%的巴基斯坦人遜尼派,5%人口什葉派(數字…

国道422号標識 瀬田川令和大橋 基本情報国 日本所在地 大津市交差物件 瀬田川用途 道路橋路線名 国道422号 大石東バイパス管理者 滋賀県施工者 高田機工着工 2014年竣工 2019年開通 2019年5月26日座標 北緯34度55分54.6秒 東経135度54分56.2秒 / 北緯34.931833度 東経135.915611度 / 34.931833; 135.915611座標: 北緯34度55分54.6秒 東経135度54分56.2秒 / 北緯34.931833度 東経…

1930s Chinese civic campaign Part of a series onConservatism Variants Authoritarian Corporatist Cultural Fiscal Green Liberal Libertarian Moderate National Paternalistic Populist Pragmatic Progressive Reactionary Religious Social Traditionalist Ultra Concepts Ancestral worship Authority Traditional Class collaboration Convention Cultural heritage Culture of life Pro-Life Custom Discipline Duty Elitism Aristocracy Meritocracy Noblesse oblige Familialism Family values Fundamentalism Gender roles C…

Department in Loroum Province, Burkina FasoOuindiguiDepartmentOuindigui Department location in the provinceCountry Burkina FasoProvinceLoroum ProvinceTime zoneUTC+0 (GMT 0) Ouindigui is a department or commune of Loroum Province in north-western Burkina Faso. Its capital lies at the town of Ouindigui.[1] References ^ Burkinabé government inforoute communale Archived 2008-01-24 at the Wayback Machine vte Loroum ProvinceCapital: Titao Banh Department Ouindigui Department Solle Depart…

For other uses, see Black Butterfly (disambiguation). 2013 Indian filmBlack ButterflyDirected byRajaputra RanjithWritten byJ. Pallassery Balaji ShakthivelProduced byManiyanpilla RajuStarringMithun MuraliMalavika NairNiranjSamskruthy ShenoyCinematographyAlagappanEdited byV. SajanMusic byM. G. SreekumarGopi SunderRelease date 15 February 2013 (2013-02-15) CountryIndiaLanguageMalayalam Black Butterfly is a 2013 Indian Malayalam-language film directed by Rajaputra Ranjith.[1] …

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Artikel i…

Tracy LawrenceInformasi latar belakangNama lahirTracy Lee LawrenceLahir27 Januari 1968 (umur 55)Atlanta, Texas, Amerika Serikat[1]AsalForeman, Arkansas, Amerika Serikat[2]GenreCountryPekerjaanPenyanyi-penulis laguInstrumenVocalsGitar akustikTahun aktif1991–sekarangLabelAtlanticWarner Bros.DreamWorks NashvilleMercury NashvilleRocky ComfortBamaJam, Lawrence Music GroupArtis terkaitFlip Anderson, Larry Boone, Kenny Chesney, Tim McGraw, James Stroud, Elbert West, George Strait…

Partai Komunis Ukraina Nama dalam bahasa UkrainaКомуністична партія УкраïниNama dalam bahasa RusiaКоммунистическая партия УкраиныSingkatanKPU / КПУDibentuk19 Juni 1993 (1993-06-19)Dilarang16 Desember 2015 (dilarang di pengadilan)6 Juli 2022 (dibenarkan larangan di pengadilan)Dipisah dariPartai Sosialis UkrainaDidahului olehPartai Komunis Ukraina (Uni Soviet)Sayap pemudaKomsomol UkrainaAfiliasi internasionalICMWP Partai Komun…

16:1 compression. Foveated image with fixation point at Stephen F. Austin statue. Foveated imaging is a digital image processing technique in which the image resolution, or amount of detail, varies across the image according to one or more fixation points. A fixation point indicates the highest resolution region of the image and corresponds to the center of the eye's retina, the fovea. The location of a fixation point may be specified in many ways. For example, when viewing an image on a compute…

32

DIMENSIONのアルバムについては「32 (DIMENSIONのアルバム)」をご覧ください。 31 ← 32 → 33素因数分解 25二進法 100000三進法 1012四進法 200五進法 112六進法 52七進法 44八進法 40十二進法 28十六進法 20二十進法 1C二十四進法 18三十六進法 Wローマ数字 XXXII漢数字 三十二大字 参拾弐算木 位取り記数法 三十二進法 32(三十二、さんじゅうに、みそふた、みそじあまりふたつ)は、…

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 18.217.8.171