Right kite

A right kite with its circumcircle and incircle. The leftmost and rightmost vertices have right angles.

In Euclidean geometry, a right kite is a kite (a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other) that can be inscribed in a circle.[1] That is, it is a kite with a circumcircle (i.e., a cyclic kite). Thus the right kite is a convex quadrilateral and has two opposite right angles.[2] If there are exactly two right angles, each must be between sides of different lengths. All right kites are bicentric quadrilaterals (quadrilaterals with both a circumcircle and an incircle), since all kites have an incircle. One of the diagonals (the one that is a line of symmetry) divides the right kite into two right triangles and is also a diameter of the circumcircle.

In a tangential quadrilateral (one with an incircle), the four line segments between the center of the incircle and the points where it is tangent to the quadrilateral partition the quadrilateral into four right kites.

Special case

A special case of right kites are squares, where the diagonals have equal lengths, and the incircle and circumcircle are concentric.

Characterizations

A kite is a right kite if and only if it has a circumcircle (by definition). This is equivalent to its being a kite with two opposite right angles.

Metric formulas

Since a right kite can be divided into two right triangles, the following metric formulas easily follow from well known properties of right triangles. In a right kite ABCD where the opposite angles B and D are right angles, the other two angles can be calculated from

where a = AB = AD and b = BC = CD. The area of a right kite is

The diagonal AC that is a line of symmetry has the length

and, since the diagonals are perpendicular (so a right kite is an orthodiagonal quadrilateral with area ), the other diagonal BD has the length

The radius of the circumcircle is (according to the Pythagorean theorem)

and, since all kites are tangential quadrilaterals, the radius of the incircle is given by

where s is the semiperimeter.

The area is given in terms of the circumradius R and the inradius r as[3]

If we take the segments extending from the intersection of the diagonals to the vertices in clockwise order to be , ,, and , then,

This is a direct result of the geometric mean theorem.

Duality

The dual polygon to a right kite is an isosceles tangential trapezoid.[1]

Alternative definition

Sometimes a right kite is defined as a kite with at least one right angle.[4] If there is only one right angle, it must be between two sides of equal length; in this case, the formulas given above do not apply.

References

  1. ^ a b Michael de Villiers, Some Adventures in Euclidean Geometry, ISBN 978-0-557-10295-2, 2009, pp. 154, 206.
  2. ^ De Villiers, Michael (1994), "The role and function of a hierarchical classification of quadrilaterals", For the Learning of Mathematics, 14 (1): 11–18, JSTOR 40248098
  3. ^ Josefsson, Martin (2012), "Maximal Area of a Bicentric Quadrilateral" (PDF), Forum Geometricorum, 12: 237–241, archived from the original (PDF) on December 5, 2022, retrieved November 1, 2012.
  4. ^ 1728 Software Systems, Kite Calculator, accessed 8 October 2012

Read other articles:

Leuciscus idus Status konservasi Risiko Rendah (IUCN 3.1)[1] Klasifikasi ilmiah Sinonim[2] Cyprinus idus Linnaeus, 1758 Idus idus (Linnaeus, 1758) Cyprinus jeses Linnaeus, 1758 Cyprinus idbarus Linnaeus, 1758 Cyprinus orfus Linnaeus, 1758 Cyprinus microlepidotus Ekström, 1835 Leuciscus neglectus Selys-Longchamps, 1842 Idus melanotus Heckel, 1843 Idus miniatus Bonaparte, 1845 Idus miniatus Heckel & Kner, 1858 Squalius oxianus Kessler, 1877 Idus oxianus (Kessler, 1877...

 

Artikel ini sudah memiliki daftar referensi, bacaan terkait, atau pranala luar, tetapi sumbernya belum jelas karena belum menyertakan kutipan pada kalimat. Mohon tingkatkan kualitas artikel ini dengan memasukkan rujukan yang lebih mendetail bila perlu. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Abdul Hafiz Anshari [[Ketua Komisi Pemilihan Umum]] 3Masa jabatan2007–2012PresidenSusilo Bambang Yudhoyono PendahuluNazaruddin Sjamsuddin(pada tahun 2005)PenggantiHusni K...

 

الدومينيكان بوابة ويكيبيديا حول جمهورية الدومينيكان هي دولة في جزيرة هيسبانيولا وجزء من أرخبيل جزر الأنتيل الكبرى في منطقة البحر الكاريبي. يقع في الثلث الغربي من الجزيرة دولة هايتي، مما يجعل من هيسبانيولا إحدى جزيرتين في الكاريبي يتقاسمها دولتان. سواء من حيث المساحة أو ت...

Scottish polar explorer (1864–1943) Albert ArmitageBirth nameAlbert Borlase ArmitageBorn(1864-07-02)2 July 1864Balquhidder, Scotland, UKDied31 October 1943(1943-10-31) (aged 79)Surrey, England, UKBranch Royal NavyYears of service1878–1886 Albert Borlase Armitage (2 July 1864 – 31 October 1943) was a Scottish polar explorer and officer in the Merchant Navy. Early life Armitage was born in Balquhidder, near Loch Lubnaig in Perthshire on 2 July 1864. He was one of ...

 

American actress (born 1977) Kerry WashingtonWashington in 2013BornKerry Marisa Washington (1977-01-31) January 31, 1977 (age 47)New York City, U.S.Alma materGeorge Washington UniversityOccupationActressYears active1994–presentSpouse Nnamdi Asomugha ​(m. 2013)​Children2AwardsFull list Kerry Marisa Washington[1] (born January 31, 1977)[2][3][4] is an American actress. She gained wide public recognition for starring a...

 

Untuk bendera Sudan Selatan, lihat Bendera Sudan Selatan. Rasio bendera: 1:2 Bendera sebelumnya (1956-1970) Bendera sementara pada saat Konferensi Asia–Afrika (April 1955) Bendera Sudan (Arab: علم السودانcode: ar is deprecated ) disetujui tanggal 20 Mei 1970, dan terdiri dari tiga warna merah-putih-hitam dengan segitiga hijau di sebelah kiri. Sebelum kudeta militer 1969 Gaafar Nimeiry, rancangan tiga warna biru-kuning-hijau digunakan. Lihat pula Lambang Sudan Bendera Kuwait Bender...

American playwright, lyricist, and director (1950-1991) Howard AshmanAshman in 1989BornHoward Elliott Ashman(1950-05-17)May 17, 1950Baltimore, Maryland, U.S.DiedMarch 14, 1991(1991-03-14) (aged 40)New York City, U.S.Resting placeOhev Shalom Memorial Park, Reisterstown, Maryland, U.S.Alma materIndiana UniversityBoston UniversityOccupationsPlaywrightlyriciststage directorYears active1977–1991Notable workLittle Shop of HorrorsThe Little Mermaid Beauty and the BeastAladdinPartner...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2018) رباني غلام معلومات شخصية الميلاد 8 أكتوبر 1951 (73 سنة)  الجنسية أفغانستان  الحياة العملية المهنة ملاكم  نوع الرياضة الملاكمة  تعديل مصدري - تعديل   ر...

 

American lawyer Toensing redirects here. For other people and similar names, see Toensing (surname). Victoria ToensingToensing in 2002BornVictoria Ann Long (1941-10-16) October 16, 1941 (age 82)[1]Colón, PanamaEducationIndiana University, Bloomington (BS)University of Detroit (JD)Political partyRepublicanSpouse(s) Trent Toensing ​ ​(m. 1962; div. 1976)​[2][3] Joseph diGenova ​(m. 1981)​&...

United States federal law concerning mass afforestation The Clarke–McNary Act of 1924 (ch. 348, 43 Stat. 653, enacted June 7, 1924) was one of several pieces of United States federal legislation which expanded the Weeks Act of 1911, and was named for Representative John D. Clarke and Senator Charles McNary. The 1911 Weeks Act had allowed the purchase of land to enlarge the National Forest System. Two years after the Weeks Act was passed, over 700,000 acres (2,800 km²) had be...

 

Преднесение креста во время шествия на осляти Преднесе́ние креста́ — в православной традиции — привилегия предстоятеля церкви (в ряде случаев и других архиереев) на несение перед ними во время торжественных церемоний и на богослужениях распятия (предносного креста)...

 

Ця стаття потребує додаткових посилань на джерела для поліпшення її перевірності. Будь ласка, допоможіть удосконалити цю статтю, додавши посилання на надійні (авторитетні) джерела. Зверніться на сторінку обговорення за поясненнями та допоможіть виправити недоліки. Мат...

Breakdance aux Jeux olympiques Généralités Sport Break dance Création 2002 1re apparition Paris, 2024 Organisateur(s) CIO Éditions 1re en 2024 Périodicité Tous les 4 ans Pour la compétition à venir voir : Breakdance aux Jeux olympiques d'été de 2024 modifier La première apparition du breakdance aux Jeux olympiques aura lieu en 2024 aux Jeux de Paris 2024. C’est à Buenos Aires que ce sport fut présenté au public olympique lors des Jeux olympiques de la jeunesse de 2...

 

عنتطواف إيطاليا للسيدات سباقات 1988  [لغات أخرى]‏ 1989  [لغات أخرى]‏ 1990  [لغات أخرى]‏ 1993  [لغات أخرى]‏ 1994  [لغات أخرى]‏ 1995  [لغات أخرى]‏ 1996  [لغات أخرى]‏ 1997  [لغات أخرى]‏ 1998  [لغات أخرى]‏ 1999  [لغات أخرى]‏ 2000...

 

Annual diplomatic meeting of the BRICS in 2014 6th BRICS SummitSexta cúpula do BRICSOfficial logoHost countryBrazilDate14 July 2014 (2014-07-14)–16 July 2014 (2014-07-16)Venue(s)Centro de Eventos do Ceará[1]CitiesFortaleza and Brasília[2]ParticipantsBRICSFollows5th BRICS summitPrecedes7th BRICS summitWebsitebrics6.itamaraty.gov.br The 6th BRICS summit was the sixth annual diplomatic meeting of the BRICS, a grouping of major emerging economies...

Gereja Ballinasloe Ballinasloe (bahasa Irlandia: Béal Átha na Slua) ialah sebuah kota di bagian timur County Galway, Republik Irlandia. Pada tahun 2002 Ballinasloe berpenduduk total 6.216 jiwa di kota dan 588 di lingkungannya. Jalan N6 melintas di kota ini dan ada jalur kereta api antara Dublin dan Galway yang melintasi Ballinasloe. I like a chicken curry Pranala luar Ballinasloe.com - Situs resmi Diarsipkan 2012-07-19 di Archive.is Artikel bertopik geografi atau tempat Republik Irlandia in...

 

Constituency of the Haryana legislative assembly in India Panipat city Assembly constituencyConstituency No. 25 for the Haryana Legislative AssemblyConstituency detailsCountryIndiaRegionNorth IndiaStateHaryanaDistrictPanipatLS constituencyKarnalEstablished2009Total electors2,20,440[1]ReservationNoneMember of Legislative Assembly14th Haryana Legislative AssemblyIncumbent Parmod Kumar Vij PartyBharatiya Janata PartyElected year2019 Panipat City Assembly constituency is one of the 90 con...

 

Extreme form of nationalism Ultranationalist redirects here. For the fictional Ultranationalists faction from the Call of Duty video game series, see Call of Duty § Modern Warfare series. Part of a series onNationalism Nation forming Nationalism in the Middle Ages Anthem Church Colours Emblem Father Flag Epic God Identity Language Myth Sport State Symbol Treasure Core values Allegiance Independence Patriotism Self-determination Solidarity Types African Anarchist Blind Bourgeois Business...

This list includes those recognised minerals beginning with the letter O. The International Mineralogical Association is the international group that recognises new minerals and new mineral names; however, minerals discovered before 1959 did not go through the official naming procedure, although some minerals published previously have been either confirmed or discredited since that date. This list contains a mixture of mineral names that have been approved since 1959 and those mineral names ...

 

Voce principale: Borussia Verein für Leibesübungen 1900 Mönchengladbach. Borussia Verein für Leibesübungen 1900 MönchengladbachStagione 1963-1964Sport calcio Squadra Borussia M'gladbach Allenatore Fritz Langner (11ª-36ª) Hennes Weisweiler (37ª-38ª) Presidente Fritz Langner Regionalliga ovest8º posto Coppa di GermaniaPrimo turno Maggiori presenzeCampionato: Lowin, Orzessek (28)Totale: Lowin, Orzessek (29) Miglior marcatoreCampionato: Kohn (14)Totale: Kohn (15) StadioBökelberg...