Riemann–Roch theorem for surfaces

Riemann–Roch theorem for surfaces
FieldAlgebraic geometry
First proof byGuido Castelnuovo, Max Noether, Federigo Enriques
First proof in1886, 1894, 1896, 1897
GeneralizationsAtiyah–Singer index theorem
Grothendieck–Riemann–Roch theorem
Hirzebruch–Riemann–Roch theorem
ConsequencesRiemann–Roch theorem

In mathematics, the Riemann–Roch theorem for surfaces describes the dimension of linear systems on an algebraic surface. The classical form of it was first given by Castelnuovo (1896, 1897), after preliminary versions of it were found by Max Noether (1886) and Enriques (1894). The sheaf-theoretic version is due to Hirzebruch.

Statement

One form of the Riemann–Roch theorem states that if D is a divisor on a non-singular projective surface then

where χ is the holomorphic Euler characteristic, the dot . is the intersection number, and K is the canonical divisor. The constant χ(0) is the holomorphic Euler characteristic of the trivial bundle, and is equal to 1 + pa, where pa is the arithmetic genus of the surface. For comparison, the Riemann–Roch theorem for a curve states that χ(D) = χ(0) + deg(D).

Noether's formula

Noether's formula states that

where χ=χ(0) is the holomorphic Euler characteristic, c12 = (K.K) is a Chern number and the self-intersection number of the canonical class K, and e = c2 is the topological Euler characteristic. It can be used to replace the term χ(0) in the Riemann–Roch theorem with topological terms; this gives the Hirzebruch–Riemann–Roch theorem for surfaces.

Relation to the Hirzebruch–Riemann–Roch theorem

For surfaces, the Hirzebruch–Riemann–Roch theorem is essentially the Riemann–Roch theorem for surfaces combined with the Noether formula. To see this, recall that for each divisor D on a surface there is an invertible sheaf L = O(D) such that the linear system of D is more or less the space of sections of L. For surfaces the Todd class is , and the Chern character of the sheaf L is just , so the Hirzebruch–Riemann–Roch theorem states that

Fortunately this can be written in a clearer form as follows. First putting D = 0 shows that

    (Noether's formula)

For invertible sheaves (line bundles) the second Chern class vanishes. The products of second cohomology classes can be identified with intersection numbers in the Picard group, and we get a more classical version of Riemann Roch for surfaces:

If we want, we can use Serre duality to express h2(O(D)) as h0(O(K − D)), but unlike the case of curves there is in general no easy way to write the h1(O(D)) term in a form not involving sheaf cohomology (although in practice it often vanishes).

Early versions

The earliest forms of the Riemann–Roch theorem for surfaces were often stated as an inequality rather than an equality, because there was no direct geometric description of first cohomology groups. A typical example is given by Zariski (1995, p. 78), which states that

where

  • r is the dimension of the complete linear system |D| of a divisor D (so r = h0(O(D)) −1)
  • n is the virtual degree of D, given by the self-intersection number (D.D)
  • π is the virtual genus of D, equal to 1 + (D.D + K.D)/2
  • pa is the arithmetic genus χ(OF) − 1 of the surface
  • i is the index of speciality of D, equal to dim H0(O(K − D)) (which by Serre duality is the same as dim H2(O(D))).

The difference between the two sides of this inequality was called the superabundance s of the divisor D. Comparing this inequality with the sheaf-theoretic version of the Riemann–Roch theorem shows that the superabundance of D is given by s = dim H1(O(D)). The divisor D was called regular if i = s = 0 (or in other words if all higher cohomology groups of O(D) vanish) and superabundant if s > 0.

References

  • Topological Methods in Algebraic Geometry by Friedrich Hirzebruch ISBN 3-540-58663-6
  • Zariski, Oscar (1995), Algebraic surfaces, Classics in Mathematics, Berlin, New York: Springer-Verlag, ISBN 978-3-540-58658-6, MR 1336146
  • Smith, Roy. "On Classical Riemann Roch and Hirzebruch's generalization" (PDF). Department of Mathematics Boyd Research and Education Center University of Georgia.

Read other articles:

For other uses, see The Strain (disambiguation). The StrainCreated byGuillermo del ToroChuck HoganOriginal workThe Strain (2009)Print publicationsComics The Strain (2011–2015) Mister Quinlan – Vampire Hunter (2016–2017) Films and televisionTelevision seriesThe Strain (2014–2017) The Strain is an American vampire horror media franchise created by Guillermo del Toro and Chuck Hogan. Del Toro first envisioned the story line as a television series, but was unable to find a br...

 

American college football season 2014 Southern Utah Thunderbirds footballConferenceBig Sky ConferenceRecord3–9 (3–5 Big Sky)Head coachEd Lamb (7th season)Offensive coordinatorGary Crowton (1st season)Defensive coordinatorDemario Warren (1st season)Home stadiumEccles ColiseumSeasons← 20132015 → 2014 Big Sky Conference football standings vte Conf Overall Team   W   L     W   L   No. 4 Eastern Washington $^   7 R...

 

Disambiguazione – Se stai cercando altri significati, vedi Censura (disambigua). Questa voce o sezione sugli argomenti politica e sociologia non cita le fonti necessarie o quelle presenti sono insufficienti. Commento: intere sezioni senza fonti; in particolare, le varie classificazioni Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti dei progetti di riferimento 1, 2. Timbro di censura. La censura ...

British politician John ParkerParker in 1978Father of the House of CommonsIn office3 May 1979 – 9 June 1983Preceded byGeorge StraussSucceeded byJames CallaghanMember of Parliamentfor DagenhamRomford (1935–1945)In office14 November 1935 – 13 May 1983Preceded byWilliam HutchisonSucceeded byBryan Gould (Dagenham) Thomas Macpherson (Romford) Personal detailsBornHerbert John Harvey Parker(1906-07-15)15 July 1906Bristol, EnglandDied24 November 1987(1987-11-24) (aged 81)...

 

Questa voce o sezione sull'argomento ecologia è priva o carente di note e riferimenti bibliografici puntuali. Sebbene vi siano una bibliografia e/o dei collegamenti esterni, manca la contestualizzazione delle fonti con note a piè di pagina o altri riferimenti precisi che indichino puntualmente la provenienza delle informazioni. Puoi migliorare questa voce citando le fonti più precisamente. Segui i suggerimenti del progetto di riferimento. Inquinamento atmosferico da un forno da coke....

 

Autoklaf sederhana Sterilisasi atau penyucihamaan adalah pemusnahan atau eliminasi semua jasad renik, termasuk spora bakteri, yang sangat resistan.[1] Lihat Pula Mikroorganisme Disinfektan Antiseptik Autoklaf Pasteurisasi UHT Referensi ^ Levinson W. 2008. Review of Medical Microbiology & Imunology, Tenth Edition. New York: The McGraw-Hill Companies, Inc.

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Timeline of historic inventions – news · newspapers · books · scholar · JSTOR (November 2023) (Learn how and when to remove this template message) The timeline of historic inventions is a chronological list of particularly important or significant technologica...

 

Ewan McGregorEwan McGregor at Venice Film Festival on September 7, 2009LahirEwan Gordon McGregorPekerjaanAktor, penyanyiTahun aktif1993–sekarangSuami/istriEve Mavrakis (1995-2017) Ewan Gordon McGregor (lahir 31 Maret 1971) adalah seorang aktor berdarah Skotlandia yang cukup sukses dalam berkarier di film-film popular, indie maupun art-house. Ia merupakan pemeran film urutan ke-36 dalam daftar The Top 100 Movie Stars of All Time yang dikeluarkan oleh Majalah Empire. Ia mungkin paling d...

 

Town in North Rhine-Westphalia, GermanyLohmar TownProtestant church in Honrath Coat of armsLocation of Lohmar within Rhein-Sieg-Kreis district Lohmar Show map of GermanyLohmar Show map of North Rhine-WestphaliaCoordinates: 50°49′N 7°13′E / 50.817°N 7.217°E / 50.817; 7.217CountryGermanyStateNorth Rhine-WestphaliaAdmin. regionKöln DistrictRhein-Sieg-Kreis Subdivisions12Government • Mayor (2020–25) Claudia Wieja[1] (Greens)Area •...

Neighbourhood in Toronto, Ontario, CanadaWest Don LandsNeighbourhoodThe West Don Lands during the 2015 Pan American GamesWest Don Lands areaLocation within TorontoCoordinates: 43°39′18″N 79°21′11″W / 43.655°N 79.353°W / 43.655; -79.353Country CanadaProvince OntarioCityToronto The West Don Lands are the site of a neighbourhood under construction in Toronto, Ontario, Canada.[1] The area is bordered by the Don River, King Street, Parliament ...

 

English artist (1740–1821) For the English academic and cleric, see Nicholas Pocock (historian). Engraving of Pocock by Edward Scriven Pocock's bird's-eye-view painting of the Battle of Copenhagen (1801) Nicholas Pocock (2 March 1740 – 9 March 1821) was an English artist known for his many detailed paintings of naval battles during the age of sail. Birth and early career at sea Pocock was born in Bristol in 1740, the son of a seaman.[1] He followed his father's profession and was ...

 

BonganKecamatanKantor kecamatan BonganNegara IndonesiaProvinsiKalimantan TimurKabupatenKutai BaratPopulasi • Total12,200 (2.021) jiwaKode Kemendagri64.07.12 Kode BPS6402010 Luas2.274,80 km²Desa/kelurahan16/- Bongan adalah sebuah kecamatan di Kabupaten Kutai Barat, Provinsi Kalimantan Timur, Indonesia. Batas wilayah Bongan mempunyai wilayah seluas 2274,7 km² dengan batas-batas sebagai berikut: Utara Kabupaten Kutai Kartanegara Timur Kabupaten Kutai Kartanegara Selatan K...

Wilma Montesi. L'affaire Wilma Montesi est une affaire criminelle survenue en Italie en 1953 et concernant l'assassinat à Rome d'une jeune femme, Wilma Montesi (1932-1953) et qui a eu un retentissement médiatique considérable en raison de l'implication de plusieurs personnalités de premier plan dans les enquêtes qui ont suivi[1]. L'affaire n'a toujours pas été résolue. La découverte du cadavre et la clôture de l'enquête La découverte du corps Le samedi 11 avril 1953, veille de Pâ...

 

OassPoster filmSutradaraAbhinav Shiv TiwariProduserRaaj Rahhi Jimeesh Gandhi Debasish Bhattacharjee Zenaida Mastura Dharmendra YashovardhanDitulis olehPrajay Shah (naskah) Abhay Shetty (naskah) Aparajit Shukla (Dialog)PemeranDibya Chhetri Priyanka Bose Yashpal Sharma Jameel KhanPenata musikLouis BanksSinematograferViraj SinghPenyuntingPascale ChavanceTanggal rilis 18 Oktober 2012 (2012-10-18) NegaraIndiaBahasaHindi Oass (Titik Embun) adalah sebuah film Bollywood 2012 yang disutrada...

 

Questa voce sull'argomento dipinti è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. L'enfant grasAutoreAmedeo Modigliani Data1915 TecnicaOlio su tela Dimensioni46×38 cm UbicazionePinacoteca di Brera, Milano L'enfant gras è un dipinto a olio su tela (46 x38 cm) realizzato nel 1915 dal pittore italiano Amedeo Modigliani. Inizialmente fece parte della collezione del mercante Paul Guillaume, poi fu a...

Arterial road and residential district in west Hull, East Riding of Yorkshire, England Tower Cinema, Anlaby Road Anlaby Road is a major arterial road and residential district in west Hull, East Riding of Yorkshire in the north of England. It runs west from the city centre to the city boundary, designated A1105 to its junction with Boothferry Road and then B1231 from there to the city boundary.[1] Description Anlaby Road is the site of Hull Royal Infirmary,[2] Hull's main gener...

 

1951 film by Gordon Douglas I Was a Communist for the FBITheatrical release posterDirected byGordon DouglasScreenplay byCrane WilburBased onthe SEP articles I Posed as a Communist for the F.B.I.by Matt CveticPete MartinProduced byBryan FoyStarringFrank LovejoyNarrated byFrank LovejoyCinematographyEdwin B. DuParEdited byFolmar BlangstedMusic by William Lava Max Steiner (uncredited) Color processBlack and whiteProductioncompanyWarner Bros.Distributed byWarner Bros.Release dates May 2, ...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Theory of AmbitionsNama lainTradisional風再起時Sederhana风再起时MandarinFēng Zài Qǐ ShíKantonFung1 Zoi3 Hei3 Si4 SutradaraPhilip YungProduserJulia ChuSkenarioPhilip YungPemeranTony LeungAaron KwokPerusahaanproduksiMei Ah Film Product...

Parts of this article (those related to newly built buildings after 2010, such as in the Barcode Project) need to be updated. Please help update this article to reflect recent events or newly available information. Last update: 14. nov. 2016 (January 2017) Radisson Blu Plaza Hotel (right) and Posthuset (left), two of the tallest buildings in Norway. This is a list of the tallest buildings in Norway.Nidarosdomen in Trondheim Tallest completed buildings Building Location Height Floors Built No...

 

دانييل فاس Daniel Wass فاس مع فالنسيا في 2019 معلومات شخصية الاسم الكامل دانيال واس الميلاد 31 مايو 1989 (العمر 35 سنة) الطول 1.81 م (5 قدم 11 1⁄2 بوصة) مركز اللعب لاعب وسط أو ظهير الجنسية مملكة الدنمارك  معلومات النادي النادي الحالي بروندبي الرقم 10 مسيرة الشباب سنوات فريق 1995...