RepRap

All of the plastic parts for the machine on the right were produced by the machine on the left. Adrian Bowyer (left) and Vik Olliver (right) are members of the RepRap project.

RepRap (a contraction of replicating rapid prototyper) is a project to develop low-cost 3D printers that can print most of their own components. As open designs, all of the designs produced by the project are released under a free software license, the GNU General Public License.[1]

Due to the ability of these machines to make some of their own parts, authors envisioned the possibility of cheap RepRap units, enabling the manufacture of complex products without the need for extensive industrial infrastructure.[2][3][4] They intended for the RepRap to demonstrate evolution in this process as well as for it to increase in number exponentially.[5][6] A preliminary study claimed that using RepRaps to print common products results in economic savings.[7]

The RepRap project started in England in 2005 as a University of Bath initiative, but it is now made up of hundreds of collaborators worldwide.[5]

History

RepRap 0.1 building an object
First part ever made by a RepRap to make a RepRap, fabricated by the Zaphod prototype, by Vik Olliver (2007-09-13)
A RepRap 10th Birthday celebration

RepRap was founded in 2005 by Adrian Bowyer, a Senior Lecturer in mechanical engineering at the University of Bath in England. Funding was obtained from the Engineering and Physical Sciences Research Council.

On 13 September 2006, the RepRap 0.2 prototype printed the first part identical to its own, which was then substituted for the original part created by a commercial 3D printer. On 9 February 2008, RepRap 1.0 "Darwin" made at least one instance of over half its rapid-prototyped parts. On 14 April 2008, RepRap made an end-user item: a clamp to hold an iPod to the dashboard of a Ford Fiesta car. By September that year, at least 100 copies had been produced in various countries.[8] On 29 May 2008, Darwin achieved self replication by making a complete copy of all its rapid-prototyped parts[9] (which represent 48% of all the parts, excluding fasteners). A couple hours later the "child" machine had made its first part: a timing-belt tensioner.

In April 2009, electronic circuit boards were produced automatically with a RepRap, using an automated control system and a swappable head system capable of printing both plastic and conductive solder. On 2 October 2009, the second generation design, called Mendel, printed its first part. Mendel's shape resembles a triangular prism rather than a cube. Mendel was completed in October 2009. On 27 January 2010, the Foresight Institute announced the "Kartik M. Gada Humanitarian Innovation Prize" for the design and construction of an improved RepRap.[10]

On 31 August 2010, the third generation design was named Huxley. It was a miniature of Mendel, with 30% of the original print volume. Within two years, RepRap and RepStrap building and use were widespread in the technology, gadget and engineering communities.[11]

In 2012, the first successful Delta design, Rostock, had a radically different design. The latest iterations used OpenBeams, wires (typically Dyneema or Spectra fishing lines) instead of belts, and so forth, which also represented some of the latest trends in RepRaps.[citation needed]

In early January 2016, RepRapPro (short for "RepRap Professional", and one commercial arm of the RepRap project in the UK) announced that it would cease trading on 15 January 2016. The reason given was congestion of the market for low-cost 3D printers and the inability to expand in that market. RepRapPro China continues to operate.[12]

Hardware

As the project was designed by Bowyer to encourage evolution, many variations have been created.[13][14] As an open source project, designers are free to make modifications and substitutions, but they must allow any of their potential improvements to be reused by others.

There are many RepRap printer designs including:

Software

Adrian Bowyer talking about the RepRap Project at Poptech 2007

RepRap was conceived as a complete replication system rather than simply a piece of hardware. To this end the system includes computer-aided design (CAD) in the form of a 3D modeling system and computer-aided manufacturing (CAM) software and drivers that convert RepRap users' designs into a set of instructions to the RepRap to create physical objects.

Initially, two CAM tool chains were developed for RepRap. The first, called "RepRap Host", was written in Java by lead RepRap developer Adrian Bowyer. The second, "Skeinforge",[15] was written by Enrique Perez. Both are complete systems for translating 3D computer models into G-code, the machine language that commands the printer.

Later, other programs like Slic3r and Cura were created. Recently, the Franklin firmware was created to allow RepRap printers to be used for other purposes such as milling and fluid handling.[16]

Free and open-source 3-D modeling programs like Blender, OpenSCAD, and FreeCAD are preferred in the RepRap community, but almost any CAD or 3D modeling program can be used with the RepRap, as long as it can produce STL files (Slic3r also supports .obj and .amf files). Thus, content creators make use of any tools they are familiar with, whether they are commercial CAD programs, such as SolidWorks and Autodesk AutoCAD, Autodesk Inventor, Tinkercad, or SketchUp along with the libre software.

Replication materials

A timelapse video of a robot model (logo of Make magazine) being printed using FFF on a RepRap Fisher, a delta-style printer.

RepRaps print objects from ABS, Polylactic acid (PLA), Nylon (possibly not all extruders can), HDPE, TPE and similar thermoplastics.

The mechanical properties of RepRap-printed PLA and ABS have been tested and are equivalent to the tensile strengths of parts made by proprietary printers.[17]

Unlike with most commercial machines, RepRap users are encouraged to experiment with materials and methods, and to publish their results. Methods for printing novel materials (such as ceramics) have been developed this way. In addition, several RecycleBots have been designed and fabricated to convert waste plastic, such as shampoo containers and milk jugs, into inexpensive RepRap filament.[18] There is some evidence that using this approach of distributed recycling is better for the environment[19][20][21] and can be useful for creating "fair trade filament".[22]

In addition, 3D printing products at the point of consumption has also been shown to be better for the environment.[23]

The RepRap project has identified polyvinyl alcohol (PVA) as a potentially suitable support material to complement its printing process, although massive overhangs can be made by extruding thin layers of the primary printing media as support (these are mechanically removed afterwards).

Printing electronics is a major goal of the RepRap project so that it can print its own circuit boards. Several methods have been proposed:

  • Wood's metal or Field's metal: low-melting point metal alloys to incorporate electrical circuits into the part as it is being formed.
  • Silver/carbon-filled polymers: commonly used to repair circuit boards and are being considered for use for electrically conductive traces.[24]
  • Direct extrusion of solder[25]
  • Conductive wires: can be laid into a part from a spool during the printing process

Using a MIG welder as a print head a RepRap deltabot stage can be used to print metals like steel.[26][27]

The RepRap concept can also be applied to a milling machine[28] and to laser welding.[29]

Construction

Although the aim of the project is for RepRap to be able to autonomously construct many of its own mechanical components soon using fairly low-level resources, several components such as sensors, stepper motors and microcontrollers cannot yet be made using the RepRap's 3D printing technology and so have to be produced independently. The plan is to approach 100% replication over a series of versions. For example, from the onset of the project, the RepRap team has explored a variety of approaches to integrating electrically-conductive media into the product. This would allow inclusion of connective wiring, printed circuit boards, and possibly motors in RepRapped products. Variations in the nature of the extruded, electrically-conductive media could produce electrical components with different functions from pure conductive traces, similar to the 1940s sprayed-circuit process Electronic Circuit Making Equipment (ECME), by John Sargrove. A related approach is printed electronics. Another non-replicable component is the threaded rods for linear motions. A current research area is in using replicated Sarrus linkages to replace them.[30]

Project members

The "Core team" of the project[31] has included:

  • Adrian Bowyer, Former Senior Lecturer, Mechanical Engineering Department, University of Bath
  • Ed Sells, University of Bath PhD "3D Printing: Towards a Self-Replicating Rapid Prototyping Machine"[32]
  • Vik Olliver, the first RepRap volunteer, the first to suggest using PLA as a printing material[33]
  • Michael S. Hart (deceased 2011), creator of Project Gutenberg, Illinois

Goals

Video of RepRap printing an object

The stated goal of the RepRap project is to produce a pure self-replicating device not for its own sake, but rather to put in the hands of individuals anywhere on the planet, for a minimal outlay of capital, a desktop manufacturing system that would enable the individual to manufacture many of the artifacts used in everyday life.[5] From a theoretical viewpoint, the project aims to prove the hypothesis that "rapid prototyping and direct writing technologies are sufficiently versatile to allow them to be used to make a von Neumann universal constructor".[34]

Education

RepRap technology has great potential in educational applications, according to some scholars.[35][36][37] RepRaps have already been used for an educational mobile robotics platform.[38] Some authors have claimed that RepRaps offer an unprecedented "revolution" in STEM education.[39] The evidence comes from both the low cost of rapid prototyping by students, and the fabrication of low-cost high-quality scientific equipment from open hardware designs forming open-source labs.[3][4]

See also

Notes

  1. ^ "RepRapGPLLicence - RepRap".
  2. ^ Pearce, Joshua M.; Morris Blair, Christine; Laciak, Kristen J.; Andrews, Rob; Nosrat, Amir; Zelenika-Zovko, Ivana (2010). "3-D Printing of Open Source Appropriate Technologies for Self-Directed Sustainable Development". Journal of Sustainable Development. 3 (4). doi:10.5539/jsd.v3n4p17.
  3. ^ a b Pearce, Joshua M (2012). "Building Research Equipment with Free, Open-Source Hardware". Science. 337 (6100): 1303–1304. Bibcode:2012Sci...337.1303P. doi:10.1126/science.1228183. PMID 22984059. S2CID 44722829.
  4. ^ a b J.M. Pearce, Open-Source Lab: How to Build Your Own Hardware and Reduce Research Costs, Elsevier, 2014.
  5. ^ a b c Jones, R.; Haufe, P.; Sells, E.; Iravani, P.; Olliver, V.; Palmer, C.; Bowyer, A. (2011). "Reprap-- the replicating rapid prototyper". Robotica. 29 (1): 177–191. doi:10.1017/s026357471000069x.
  6. ^ Sells, E., Smith, Z., Bailard, S., Bowyer, A., & Olliver, V. (2009). Reprap: the replicating rapid prototyper: maximizing customizability by breeding the means of production. Handbook of Research in Mass Customization and Personalization.
  7. ^ Wittbrodt, B.T.; Glover, A.G.; Laureto, J.; Anzalone, G.C.; Oppliger, D.; Irwin, J.L.; Pearce, J.M. (2013). "Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers" (PDF). Mechatronics. 23 (6): 713–726. doi:10.1016/j.mechatronics.2013.06.002. S2CID 1766321. http://digitalcommons.mtu.edu/cgi/viewcontent.cgi?article=1048&context=materials_fp
  8. ^ Matthew Power (23 September 2008). "Mechanical Generation §". Seedmagazine. Archived from the original on 25 September 2008. Retrieved 4 June 2010.{{cite web}}: CS1 maint: unfit URL (link)
  9. ^ Vik Olliver [@VikOlliver] (27 May 2021). "Tomorrow is RepRap Day. On that day in 2008 a 3D printer first achieved self-replication. I may have assisted it slightly" (Tweet) – via Twitter.
  10. ^ "Gada Prizes". humanity+. Archived from the original on 29 July 2012. Retrieved 25 April 2011.
  11. ^ "Ingeniøren". Ingeniøren media. 26 September 2012. Archived from the original on 15 October 2012. Retrieved 26 September 2012.
  12. ^ "RepRap Professional Ltd. is now closed". 6 January 2016.
  13. ^ RepRap Family Tree
  14. ^ Chulilla, J. L. (2011). "The Cambrian Explosion of Popular 3D Printing". International Journal of Interactive Multimedia and Artificial Intelligence. 1: 4.
  15. ^ Skeinforge
  16. ^ Wijnen, Bas; Anzalone, Gerald C.; Haselhuhn, Amberlee S.; Sanders, P. G.; Pearce, Joshua M. (2016). "Free and Open-source Control Software for 3-D Motion and Processing". Journal of Open Research Software. 4: 2. doi:10.5334/jors.78.
  17. ^ Tymrak, B.M.; Kreiger, M.; Pearce, J.M. (2014). "Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions". Materials & Design. 58: 242–246. doi:10.1016/j.matdes.2014.02.038. S2CID 15552570.
  18. ^ Baechler, Christian; DeVuono, Matthew; Pearce, Joshua M. (2013). "Distributed Recycling of Waste Polymer into RepRap Feedstock". Rapid Prototyping Journal. 19 (2): 118–125. doi:10.1108/13552541311302978. S2CID 15980607.
  19. ^ Kreiger, M., Anzalone, G. C., Mulder, M. L., Glover, A., & Pearce, J. M. (2013). Distributed Recycling of Post-Consumer Plastic Waste in Rural Areas. MRS Online Proceedings Library, 1492, mrsf12-1492. open access
  20. ^ The importance of the Lyman Extruder, Filamaker, Recyclebot and Filabot to 3D printing Archived 2014-03-18 at the Wayback Machine – VoxelFab, 2013.
  21. ^ M. Kreiger, G. C. Anzalone, M. L. Mulder, A. Glover and J. M Pearce (2013). Distributed Recycling of Post-Consumer Plastic Waste in Rural Areas. MRS Online Proceedings Library, 1492, mrsf12-1492-g04-06 doi:10.1557/opl.2013.258. open access
  22. ^ Feeley, S. R.; Wijnen, B.; Pearce, J. M. (2014). "Evaluation of Potential Fair Trade Standards for an Ethical 3-D Printing Filament". Journal of Sustainable Development. 7 (5): 1–12. doi:10.5539/jsd.v7n5p1.
  23. ^ Kreiger, Megan; Pearce, Joshua M. (2013). "Environmental Life Cycle Analysis of Distributed Three-Dimensional Printing and Conventional Manufacturing of Polymer Products". ACS Sustainable Chemistry & Engineering. 1 (12): 1511–1519. doi:10.1021/sc400093k.
  24. ^ Simon J. Leigh, Robert J. Bradley, Christopher P. Purssell, Duncan R. Billson, David A. Hutchins A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors
  25. ^ RepRap blog 2009 visited 2/26/2014
  26. ^ An Inexpensive Way to Print Out Metal Parts - The New York Times
  27. ^ Anzalone, Gerald C.; Chenlong Zhang; Wijnen, Bas; Sanders, Paul G.; Pearce, Joshua M. (2013). "A Low-Cost Open-Source Metal 3-D Printer". IEEE Access. 1: 803–810. doi:10.1109/ACCESS.2013.2293018.
  28. ^ Kostakis, V., & Papachristou, M. (2013). Commons-based peer production and digital fabrication: The case of a RepRap-based, Lego-built 3D printing-milling machine. Telematics and Informatics.
  29. ^ Laureto, John; Dessiatoun, Serguei; Ohadi, Michael; Pearce, Joshua (2016). "Open Source Laser Polymer Welding System: Design and Characterization of Linear Low-Density Polyethylene Multilayer Welds". Machines. 4 (3): 14. doi:10.3390/machines4030014.
  30. ^ "I, replicator". New Scientist. 29 May 2010.
  31. ^ "The Core Team - who we are" Archived 2013-04-06 at the Wayback Machine, reprap.org/wiki
  32. ^ Petch, Michael (31 May 2018). "Interview: Ed Sells, RepRap 'opened up a multi-billion dollar industry now known as 3D printing'". 3D Printing Industry. Archived from the original on 28 July 2020.
  33. ^ "Interview: Vik Olliver, the first RepRap volunteer – 'We didn't just build a 3D printer'". 29 May 2018. Archived from the original on 21 February 2020.
  34. ^ "RepRap—the Replication Rapid Prototyper Project, IdMRC" (PDF). Archived from the original (PDF) on 6 April 2012. Retrieved 19 February 2007.
  35. ^ Schelly, Chelsea; Anzalone, Gerald; Wijnen, Bas; Pearce, Joshua M. (2015). "Open-source 3-D printing technologies for education: Bringing additive manufacturing to the classroom". Journal of Visual Languages & Computing. 28: 226–237. doi:10.1016/j.jvlc.2015.01.004.
  36. ^ Grujović, N., Radović, M., Kanjevac, V., Borota, J., Grujović, G., & Divac, D. (2011, September). 3D printing technology in education environment. In 34th International Conference on Production Engineering (pp. 29-30).
  37. ^ Mercuri, R., & Meredith, K. (2014, March). An educational venture into 3D Printing. In Integrated STEM Education Conference (ISEC), 2014 IEEE (pp. 1-6). IEEE.
  38. ^ Gonzalez-Gomez, J., Valero-Gomez, A., Prieto-Moreno, A., & Abderrahim, M. (2012). A new open source 3d-printable mobile robotic platform for education. In Advances in autonomous mini robots (pp. 49-62). Springer Berlin Heidelberg.
  39. ^ J. Irwin, J.M. Pearce, D. Opplinger, and G. Anzalone. The RepRap 3-D Printer Revolution in STEM Education, 121st ASEE Annual Conference and Exposition, Indianapolis, IN. Paper ID #8696 (2014).

References

Read other articles:

Fl 265 Flettner Fl 265 in flight Role Experimental helicopterType of aircraft Manufacturer Flettner Designer Anton Flettner First flight 1939 Primary user Luftwaffe Number built 6 Variants Flettner Fl 282 The Flettner Fl 265 was an experimental helicopter designed by Anton Flettner. Design and development This helicopter, developed in 1938 with the support of Nazi Germany's Kriegsmarine, made it possible, for the first time, to transition from powered rotary-wing flight to autorotation ...

 

EasternSuburbs HillsDistrict Parramatta Blacktown GreaterWesternSydney Hawkesbury Inner West NorthernSuburbs CanterburyBankstown North Shore NorthernBeaches South-easternSydney South-westernSydney Sutherland Shire BotanyBay St George Macarthur SydneyCBD BondiBeach Bandara Northern Suburbs (juga dikenal sebagai Central North, Inner Northwest, Macquarie District, Ryde District dan Northern District) adalah sebutan umum yang digunakan untuk menyebut wilayah metropolitan di tepi utara Parramatta...

 

Kementerian Tenaga Kerja dan Buruh Republik Korea고용노동부雇傭勞動部Goyong nodong-buInformasi lembagaDibentuk11 November 1948Nomenklatur sebelumnyaDivisi Perburuhan, Kementerian SosialKementerian BuruhWilayah hukumPemerintah Korea SelatanKantor pusatKementerian Tenaga Kerja dan Buruh, Gedung 11, Kompleks Pemerintah Sejong, 422, Hanuridae-ro, Kota Sejong, Korea Selatan (339-012)MenteriKim Young-ju, Menteri Tenaga Kerja dan BuruhLee Sung-ki, Wakil MenteriSitus webOfficial Ministry of...

Edition of USA college basketball tournament See also: 1991 NCAA Division I Men's Basketball Championship Game 1991 NCAA Division Imen's basketball tournamentSeason1990–91Teams64Finals siteHoosier DomeIndianapolis, IndianaChampionsDuke Blue Devils (1st title, 5th title game,9th Final Four)Runner-upKansas Jayhawks (6th title game,9th Final Four)SemifinalistsNorth Carolina Tar Heels (10th Final Four)UNLV Runnin' Rebels (4th Final Four)Winning coachMike Krzyzewski (1st title)MOPChristian L...

 

Eat Kilbride District Council election 1992 East Kilbride District Council election ← 1988 7 May 1992 (1992-05-07) All 16 seats to East Kilbride District Council9 seats needed for a majorityRegistered64,170Turnout38.0%   First party Second party Third party   Lab SNP Con Party Labour SNP Conservative Last election 14 seats, 51.6% 0 seats, 30.4% 2 seats, 9.7% Seats won 12 2 2 Seat change 2 2 Popular vote 10,731 7,371 4,984 Percentage 44.2...

 

I Ain't WorriedSingel oleh OneRepublicdari album Top Gun: Maverick (Music from the Motion Picture)Diciptakan2020Dirilis13 Mei 2022 (2022-05-13)DirekamNovember 2021StudioKempinski (Budapest, Hongaria)Durasi2:28Label Mosley Interscope Pencipta Ryan Tedder Brent Kutzle Tyler Spry John Eriksson Peter Morén Björn Yttling Produser Tedder Kutzle Simon Oscroft Spry John Nathaniel Kronologi singel OneRepublic You Were Loved (2022) I Ain't Worried (2022) Runaway (2023) Video musikI Ain't Worried...

Estnisches HeerEesti Maavägi Wappen der Eesti Maavägi Aufstellung 3. September 1991 Staat Estland Estland Streitkräfte Estnische Verteidigungsstreitkräfte Typ Heer Gliederung Division* 1. Infanteriebrigade* 2. Infanteriebrigade Stärke ca. 3.300 Soldaten Stationierungsorte Tapa, Jõhvi, Luunja, Võru, Paldiski und Ämari Führung Oberkommandierender der Streitkräfte Präsident der Republik Estland Militärischer Oberbefehlshaber Kindral Martin Herem Befehlshaber der Heeresdivision ...

 

Pour les articles homonymes, voir South Pacific (homonymie). South Pacific Scène finale, avec Ezio Pinza, Barbara Luna, Michael De Leon (ou Noel De Leon) et Mary Martin (de g. à d.) Livret Oscar Hammerstein IIJoshua Logan Lyrics Oscar Hammerstein II Musique Richard Rodgers Mise en scène Joshua Logan Chorégraphie Joshua Logan Décors Jo Mielziner Costumes MotleyDorothy Jeakins Lumières Jo Mielziner Production Richard RodgersOscar Hammerstein IILeland HaywardJoshua Logan Première 7 avril...

 

American comedy-drama television series For other uses, see Hellcat. HellcatsHellcats title cardGenreComedy dramaCreated byKevin MurphyBased onCheer: Inside the Secret World of College Cheerleaders by journalist Kate TorgovnickStarring Aly Michalka Ashley Tisdale Heather Hemmens Robbie Jones Matt Barr Sharon Leal Gail O'Grady Opening themeBelong Here by 78violetCountry of originUnited StatesOriginal languageEnglishNo. of seasons1No. of episodes22ProductionExecutive producers Tom Welling Kevin...

† Большая гавайская древесница Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:За...

 

Italian politician (1922–1984) Enrico BerlinguerGeneral Secretary of theItalian Communist PartyIn office17 March 1972 – 11 June 1984PresidentLuigi LongoPreceded byLuigi LongoSucceeded byAlessandro NattaMember of the Chamber of DeputiesIn office5 June 1968 – 11 June 1984ConstituencyRomeMember of the European ParliamentIn office17 July 1979 – 20 January 1982ConstituencyCentral ItalySecretary of theItalian Communist Youth FederationIn office12 April 1949 �...

 

Type of sport This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Rock climbing – news · newspapers · books · scholar · JSTOR (June 2024) (Learn how and when to remove this message) Part of a series onClimbingTraditional climber leading a route in Indian Creek, Utah. Lists Climbers Piolet d'Or winners IFSC victo...

Television channel Television channel Star MoviesLogos used in the Balkans and Portugal since 2023, the Middle East since 2024 and India since 2008 respectivelyOwnershipOwnerThe Walt Disney CompanyHistoryLaunchedApril 20, 1994; 30 years ago (1994-04-20) (split from Star Plus, Taiwan only)[1]October 1, 2023; 8 months ago (2023-10-01) (Balkans)7 February 2024; 4 months ago (2024-02-07) (Portugal)[2]ReplacedBBC World Service T...

 

John Gilbert John Gilbert (10 Juli 1899-9 Januari 1936) merupakan seorang aktor berkebangsaan Amerika Serikat dan bintang utama pada era film diam. Dia dilahirkan di Logan, Utah. Dia berkarier di dunia film sejak tahun 1919. Filmografi Heart o' the Hills (1919) He Who Gets Slapped (1924) His Hour (1924) directed by King Vidor The Wife of the Centaur (1924) directed by King Vidor The Merry Widow (1925) directed by Erich von Stroheim The Big Parade (1925) directed by King Vidor Ben-Hur (1925) B...

 

Margaret Drabble novel The Peppered Moth First UK editionAuthorMargaret DrabbleLanguageEnglishGenreDomestic fictionalized biographyPublished2000PublisherViking Press (UK)Harcourt (US)Publication placeUnited KingdomPages369ISBN9780151005215OCLC45195664 The Peppered Moth is a 2000 novel by English writer Margaret Drabble; it is her fourteenth published novel.[1] The novel follows the fictional experiences of three generations of women within one family, and contains several elements tha...

Province of Turkey Province and metropolitan municipality in TurkeyTekirdağ Province Tekirdağ iliProvince and metropolitan municipalityTekirdağ Governorship LogoLocation of the province within TurkeyCountryTurkeySeatTekirdağGovernment • MayorKadir Albayrak (CHP) • ValiRecep SoytürkArea6,190 km2 (2,390 sq mi)Population (2022)[1]1,142,451 • Density180/km2 (480/sq mi)Time zoneUTC+3 (TRT)Area code0282Websitewww.tekirdag.bel...

 

American musician Christian MartucciMartucci performing with Stone Sour in 2018Background informationBirth nameChristopher Anthony Martucci[1]Born (1977-06-05) June 5, 1977 (age 47)OriginPhiladelphia, Pennsylvania, U.S.Genres Hard rock heavy metal hardcore punk Occupation(s)MusicianInstruments Guitar vocals Years active1995–presentWebsitechristianmartucci.comMusical artist Christopher Anthony Martucci (born June 5, 1977), known professionally as Christian Martucci, is an Americ...

 

Byzantine emperor in 641 HeraclonasEmperor of the RomansSolidus depicting Heraclonas (left), Heraclius (center) and Constantine III (right).[1]Byzantine emperorReignFebruary – October/November 641Coronation4 July 638PredecessorHeraclius ConstantineSuccessorConstans IICo-emperorConstantine III (until May 641)Tiberius (October 641)Born626LazicaDied642 (aged 15–16)RhodesNamesHeraclius[a]DynastyHeraclianFatherHeracliusMotherMartinaReligionChalcedonian Christianity Heraclian dy...

RGS1 بنى متوفرة بنك بيانات البروتينOrtholog search: PDBe RCSB قائمة رموز معرفات بنك بيانات البروتين 2BV1, 2GTP معرفات أسماء بديلة RGS1, 1R20, BL34, HEL-S-87, IER1, IR20, regulator of G-protein signaling 1, regulator of G protein signaling 1 معرفات خارجية الوراثة المندلية البشرية عبر الإنترنت 600323 MGI: MGI:1354694 HomoloGene: 2191 GeneCards: 5996 علم الوجود الج�...

 

The Radhika Krishnashtaka (also called the Radhashtak) is a hymn. It is said that the reciter can get to Krishna via his consort Radha by chanting it.[1] As it is composed of eight verses it is known as ashtak, ashta means eight.[2] It is recited mainly by vaishnavas. Members of the Swaminarayan Sampraday recite this daily as it is prescribed in the Satsangi Jeevan (P.4, A.48).[3] BAPS members do not recite this version but instead recite created version called Shri Sw...